Partial Protection of Carbohydrate Derivatives. Part 3. ${ }^{1}$ Regioselective $\mathbf{2}^{\prime}$-O-Deacylation of Fully Acylated Purine and Pyrimidine Ribonucleosides with Hydrazine Hydrate

By Yoshiharu Ishido,* Nobuo Nakazaki, and Nobuo Sakairi, Department of Chemistry, Faculty of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152, Japan

Abstract

In 1:4 (v/v) glacial acetic acid-pyridine, partial O-deacylation of fully acylated purine and pyrimidine ribonucleosides upon hydrazinolysis was found to be induced regioselectively in respect to the three ester functions at the 2^{\prime}-position to give the corresponding $2^{\prime}-\mathrm{OH}$ derivatives in good yields; e.g. $3^{\prime}, 5^{\prime}$ 'di- O -benzoyladenosine (70% yield), $N^{2}, 3^{\prime}, 5^{\prime}$-tribenzoylguanosine (63% yield), $3^{\prime}, 5^{\prime}$-di-O-benzoylinosine (52% yield), N^{2}-benzoyl- $3^{\prime}, 5^{\prime}$-di- O acetylguanosine (42% yield), and $3^{\prime}, 5^{\prime}$-di-O-benzoyluridine (39% yield) were isolated. Moreover, $5^{\prime}-\mathrm{O}$-acylribonucleosides were prepared in quantitative yields by use of an excess of hydrazine hydrate in $1: 1(\mathrm{v} / \mathrm{v})$ chloroformmethanol and in pyridine. Hydrazinolysis of $3^{\prime}, 5^{\prime}$-di- O-acetyl- 2^{\prime}-deoxyribonucleosides in pyridine was found to give both 5^{\prime}, and $3^{\prime}-0$-acetyl- 2^{\prime}-deoxyribonucleosides in comparable amounts ($80-90 \%$ total yields). Furthermore, hydrazinolysis of $N^{6}, 2^{\prime}, 5^{\prime}$-triacetyl- $3^{\prime}-0$-methyladenosine and $N^{6}, 3^{\prime}, 5^{\prime}$-triacetyl- 2^{\prime} - O-methyladenosine demonstrated that the $2^{\prime}-\mathrm{O}$-acetyl group is far more labile toward the nucleophile than the $3^{\prime}-\mathrm{O}$-acetyl group. The possible factors involved in the regioselectivity of hydrazinolysis are discussed.

There has been significant progress in the synthetic study of 2^{\prime}-deoxyribonucleotide oligomers or polymers in connection with the study of DNA. ${ }^{2}$ In contrast, the synthetic study of ribonucleotide oligomers or polymers has been less well developed on account of the difficulty in differentiating chemically between the $\mathbf{2}^{\prime}$ - and $\mathbf{3}^{\prime}$ -hydroxy-groups on the β-D-ribofuranosyl moiety of ribonucleosides, although various attempts have been made at the partial protection of the hydroxy-groups of ribonucleosides by acetylation, ${ }^{3}$ tosylation, ${ }^{4}$ benzylation, ${ }^{5}$ silylation, ${ }^{6}$ tritylation, ${ }^{7} 3^{\prime}$-benzoylpropionylation, ${ }^{8}$ partial hydrolysis of their $2^{\prime}, 3^{\prime}$-orthoacetates, ${ }^{9}$ and partial methanolysis, ${ }^{10}$ etc. In some cases, mixtures of several protected ribonucleosides were obtained which required chromatographic separation; such were the difficulties associated with the synthesis of ribonucleoside oligomers. These problems prompted us to develop a new method for potentially regiospecific protection of the ribonucleoside hydroxy-groups, since we have been involved in the study of specific N-debenzoylation of fully benzoylated adenosine and cytidine. ${ }^{11}$ We now report in full the results that we have recently communicated as a novel procedure for regioselective 2^{\prime} - O-deacylation of fully acylated purine and pyrimidine ribonucleosides with hydrazine hydrate. ${ }^{12}$

The unusual acidity of the 2^{\prime}-hydroxy-group of ribonucleosides has been suggested by partial 2^{\prime}-O-benzylation of uridine and cytidine, ${ }^{5}$ partial methylation of adenosine with diazomethane, ${ }^{13}$ and chromatographic separation of the resulting mixture from the latter on a column of strongly basic ion-exchange resin, ${ }^{14}$ which gave the $2^{\prime}-O$-methyl derivative as the first fraction and the $3^{\prime}-O$-methyl one as the second fraction. Moreover, X ray crystal structural analysis of a series of purine ribonucleosides ${ }^{15}$ showed that the $\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)$ bond is the shortest among the three alcoholic functions at the $2^{\prime}, 3^{\prime}$, and 5^{\prime} positions. These facts suggested the possibility that the 2^{\prime} - O-acyl groups of fully acylated ribonucleosides might behave as the most active of the
three ester functions towards an appropriate nucleophile such as hydrazine hydrate (1), which has commonly been used for the preparation of hydrazides from alkyl esters of the corresponding carboxylic acids, ${ }^{16}$ and for the specific N-debenzoylation of fully benzoylated 2^{\prime} -deoxy-adenosine and -cytidine. ${ }^{17}$

Consequently, we attempted a partial O-debenzoylation of $N^{6}, N^{6}, 2^{\prime}, 3^{\prime}, 5^{\prime}$-pentabenzoyladenosine (2) with (1) (3.3 molar equivalents) in $1: 4 \mathrm{v} / \mathrm{v}$ glacial acetic acid-pyridine. The conditions used here were directly from those which have been used for the specific N debenzoylation by Letsinger et al.; ${ }^{17}$ the present reaction at room temperature for 8 days, followed by quenching with acetone, evaporation, and separation on a column of silica gel, gave $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-benzoyladenosine (3) (10% yield), $3^{\prime}, 5^{\prime}$-di- O-benzoyladenosine (4) (63% yield), and $5^{\prime}-O$-benzoyladenosine (5) (25% yield). An attempt at the partial O-debenzoylation with benzohydrazide, in place of (1), resulted, under the same reaction conditions, in a quantitative recovery of (2). A reaction using benzohydrazide in pyridine under reflux gave (3) (55% yield), $N^{6}, 2^{\prime}, 3^{\prime}, 5^{\prime}$-tetrabenzoyladenosine (33% yield), and $N N^{\prime}$-dibenzoylhydrazine (35% yield). Such a promising result with (1) in this solvent system prompted us to make a detailed investigation of the conditions for potentially regiospecific $2^{\prime}-O$-deacylation of fully acylated ribonucleosides, by use of (3) as the model compound, the latter being readily prepared upon treatment of (2) with phenols or alcohols. ${ }^{11}$ All reactions were performed by use of a solution of (3) $(0.1 \mathrm{mmol})$ in a solvent (3 ml), which was treated with a solution of (1) $\left(1.0 \mathrm{mmol} \mathrm{ml}^{-1}\right)$ under the conditions described in each Table. Material balances of each reaction were monitored by means of high performance 1.1.c. under the conditions described in the Experimental section; (3), (4), and (5) respectively were detected as peaks with different retention times.

The effect of the amount of (1) on the selectivity in the formation of the di- O-benzoate (4) was first examined by

Table 1
Effect of the proportion of hydrazine hydrate (1) on partial deprotection of $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri-O-benzoyladenosine (3) ${ }^{a}$

(1)/(3)	Conditions		Yield of products (\%)		Recovery of (3) (\%)
	Temp.				
	$\left({ }^{\circ} \mathrm{C}\right)$	$\left(\operatorname{day}^{b}\right)$	(4)	(5)	
2	RT *	4	9		91
4	RT	4	50		50
6	RT	4	57	<1	42
8	RT	1	65	5	30
12	RT	1	61	18	21
16	RT	1	59	30	11
20	RT	1	54	41	5
6	60-65	6 h	46	<1	53
6	70-75	6 h	50	<1	49
6	80-85	6 h	61	<1	38

${ }^{\text {a }}$ All reactions were performed by use of (3) (0.1 mmol) in glacial acetic acid-pyridine ($1: 4, \mathrm{v} / \mathrm{v}$) (3 ml). ${ }^{6}$ Unless otherwise stated.

* $\mathrm{RT}=$ Room temperature.
treating a solution of (3) in $1: 4(\mathrm{v} / \mathrm{v})$ glacial acetic acidpyridine; the results thus obtained are summarized in Table 1. As seen from the table, it was found that the regioselective O-deacylation could be performed by treating (3) with 4-6 molar equivalents of (1) at room temperature for 4 days. An elevated temperature was found to facilitate the reaction without any undesirable effect on the selectivity. However, we decided to perform the O-deacylation at room temperature in view of the period for equilibration between $3^{\prime}, 5^{\prime}$ - and $2^{\prime}, 5^{\prime}$-di-O-acetyluridine; i.e., 24 days at room temperature and 2.5 h at $60^{\circ} \mathrm{C}$ in pyridine, respectively, as reported by Reese and Trentham. ${ }^{18}$ The solvent effect was next examined with respect to the reaction of (3); the results obtained are summarized in Table 2. The requirement, that the solvent should be able to dissolve both watersoluble (1) and -insoluble (3), and be inert toward (1), prompted us to use pyridine, $N N$-dimethylformamide (DMF), ethanol, chloroform-methanol ($\mathbf{1}: \mathbf{1}, \mathrm{v} / \mathrm{v}$), and 1,4-dioxan; all reactions were performed by use of (1) ($2-4$ molar equivalents) at room temperature for 2 days. Hexane, benzene, 1,2-dimethoxyethane, carbonyl compounds, and esters such as ethyl acetate were thus inadequate for this purpose. As seen from the Table, the reactions with 4 molar equivalents of (1) in DMF, ethanol, and chloroform-methanol ($1: 1, \mathrm{v} / \mathrm{v}$) unexpectedly afforded free adenosine. However, reactions with 2 molar equivalents of (1) gave (4) and (5) together with recovery of (3) in the yields shown in the Table. The selectivity observed for these reactions was inferior to that in the reaction in glacial acetic acid-pyridine ($1: 4, \mathrm{v} / \mathrm{v}$). Alternatively, the reactions in chloroformmethanol ($1: 1, \mathrm{v} / \mathrm{v}$) and in pyridine suggested their promising application to the preparative synthesis of $5^{\prime}-O$-acylribonucleosides which are described later. Moreover, these experiments may indicate that the entity giving such regioselectivity in glacial acetic acidpyridine ($1: 4, \mathrm{v} / \mathrm{v}$) is hydrazine, either inactivated by the acetic acid involved in the solvent system, or buffered by acetic acid. From these considerations, the effect of varying the proportion of acetic acid to pyridine was
examined by treating (3) with (1) in solvents with a series of different compositions; the results thus obtained are

Table 2
Examination of solvent effect on the partial deprotection of (3) ${ }^{a}$

Yield of product (\%)		Recovery of (3) (\%)
(4)	(5)	
38	15	47
18	81	1
10	42	48
26	43	31
10	78	12
22		78
40	22	38

a All reactions were performed at room temperature for 2
days. ${ }^{b} \mathbf{1 0} \%$ Methanol was added to effect complete solution of (1). ${ }^{c}$ T.1.c. of these reactions showed the formation of free adenosine.
summarized in Table 3. As seen from the Table, when the concentration of acetic acid was below 1%, the selectivity of the reaction to give (5) in high yield was low whilst, when the concentration was above 40%, the reaction was found to be much delayed and gave (4) (22% yield) with recovery of (3) (78% yield). It was thus concluded that the most advantageous concentration of glacial acetic acid in pyridine was in the

Table 3
Effect of the proportion of glacial acetic acid to pyridine on the partial deprotection of (3) ${ }^{a}$

Glacial acetic acid		Yield of products (\%)		Recovery of (3) (\%)
v/v\%	$\mathrm{mmol}^{\text {b }}$	(4)	(5)	
0	0	15	85	
1	0.5	58	21	21
5	2.5	60	8	32
10	5.0	63		37
20	10	58		42
40	20	22		78

${ }^{a}$ All reactions were performed by use of (3) (0.1 mmol) and
(1) (0.4 mmol) at room temperature for 4 days. ${ }^{b}$ mmolar
equivalent of glacial acetic acid in the solvent system (3 ml).
range $5-\mathbf{2 0} \%$; within such a range of the concentration differences in the yield of (4) were small. Subsequently, we scrutinized the effect of the proportion of glacial acetic acid to (1) in the partial O-deacylation, by treating (3) with 4 molar equivalents of (1) in glacial acetic acidpyridine ($1: 4, \mathrm{v} / \mathrm{v}$) (increasing the volume from $1,2,3$, 5 , and then up to 10 ml , in turn) at room temperature for 4 days. The results thus obtained are summarized in Table 4. These results led us to conclude that the regioselectivity which led to (4) in the partial O-deacylation was satisfactory provided we used 5-25 molar equivalents of glacial acetic acid to (1).

On the basis of the above results, we performed partial O-deacylation of fully acylated purine and pyrimidine ribonucleosides; the conditions used and the results thus obtained are summarized in Table 5. Compound (3), $N^{2}, 2^{\prime}, 3^{\prime}, 5^{\prime}$-tetrabenzoylguanosine (6), $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-benzoylinosine (7), $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-acetyladenosine (8), N^{2} -acetyl-(9), and N^{2}-benzoyl- $2^{\prime}, 3^{\prime}, 5^{\prime}$ tri- O-acetylguanosine
(10), $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-acetylinosine (11), $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-ben-zoyl- (12), and -acetyluridine (13), $N^{4}, 2^{\prime}, 3^{\prime}, 5^{\prime}$-tetra-benzoyl- (14), and -acetylcytidine (15) were respectively subjected to the reaction with (1) as shown in the 12

Table 4
Effect of the proportion of glacial acetic acid to (1) on the partial deprotection of (3) ${ }^{a}$

Glacial acetic acid-pyridine ($1: 4, \mathrm{v} / \mathrm{v}$)		Yield of products (\%)		Recovery
Volume	mmol of			
(ml)	$\mathrm{AcOH}^{\text {b }}$	(4)	(5)	of (3) (\%)
1	3.5	65	5	30
2	7	68		32
3	10.5	60		40
5	17.5	26		74
10	35	24		76

${ }^{a}$ All reactions were performed by use of (3) $(0.1 \mathrm{mmol})$ and (1) $(0.4 \mathrm{mmol})$ at room temperature for 4 days. ${ }^{b}$ Total amount of glacial acetic acid in the solvent system.
entries. Entries $1,3,5,7,8,9,10$, and 12 show successful partial O-deacylation, followed by the same workup as described above, to give mixtures of the corresponding $3^{\prime}, 5^{\prime}$ - and $2^{\prime}, 5^{\prime}$-di- O-acylribonucleosides, and their subsequent crystallization afforded the $3^{\prime}, 5^{\prime}$-di-O-acyl derivatives in satisfactory yields, except in the case of (11), exceptionally, which gave the $2^{\prime}, 5^{\prime}$-di- O acetyl derivative; the $3^{\prime}, 5^{\prime}$-di- O-acetylinosine is different from the others in being syrupy. The corresponding $5^{\prime}-O$-acyl derivatives were obtained in low yield as seen from entries $1,3,4,5,10,11$, and 12 . Entries 2, 4, and 6 also demonstrate successful trials to shorten the reaction period by performing the reactions at an elevated temperature. On the other hand, the reactions of fully acylated pyrimidine ribonucleosides showed lower regioselectivity than that observed in the series of those with the fully acylated purine ribonucleosides. Compounds (12) and (13) gave the corresponding $3^{\prime}, 5^{\prime}$-di- O-acyl derivatives (39% and 46% yields, respectively) together with the

Table 5
Partial deprotection of fully acylated purine and pyrimidine ribonucleosides with hydrazine hydrate ${ }^{a}$

Entry	Acylated nucleosides (Ns)				Reactant ratio (1): Ns	Temp. $\left({ }^{\circ} \mathrm{C}\right)$ *	Period (days ${ }^{b}$)	Yield of nucleoside acylate				
					Mixtures of			3',5'-	$2^{\prime}, 5^{\prime}$ -	5'-		
	R^{1}	R^{2}	R^{3}					diacylates ${ }^{\text {c }}$	Diacylates	Diacylates	Acylates	
1	Bz	NH_{2}	H	(3)		6	RT	2	81 (100:0)	(4) 64		(5) 9
2	Bz	NH_{2}	H	(3)	4	70-75	15 h	80 (100:0)	(4) 70			
3	Bz	OH	NHBz	(6)	4	RT	1	82 (90:10)	(6a) 63		(6c) 11	
4	Bz	OH	NHBz	(6)	2	70-75	10 h	77 (90: 10)	(6a) 55		(6c) 9	
5	Bz	OH	H	(7)	2	RT	2	74 (90: 10)	(7a) 51		(7c) 10	
6	Bz	OH	H	(7)	1.2	70-75	3 h	80 (90: 10)	(7a) 52			
7	Ac	NH_{2}	H	(8)	1.2	RT	1	$\begin{aligned} & 76(80-75: \\ & 20-25) \end{aligned}$	(8a) 53			
8	Ac	OH	NHAc	(9)	1.2	RT	2	69 (100:0)	(9a) 52			
9	Ac	OH	NHBz	(10)	1.2	RT	1		(10a) $42{ }^{\text {d }}$			
10	Ac	OH	H	(11)	1.2	RT	2	$\begin{aligned} & 85(80-75: \\ & 20-25) \end{aligned}$		(11b) 30	(11c) 10	
11	Tri-O-benzoyluridine Tri- O-acetyluridine			(12)	1.2	RT	4	65 (67:33)	(12a) 39		(12c) 28	
12				(13)	1.2	RT	3.5 h	76 (67:33)	(13a) 46		(13c) 11	

${ }^{a}$ All reactions were performed in $1: 4 \mathrm{v} / \mathrm{v}$ glacial acetic acid-pyridine. ${ }^{b}$ Unless otherwise noticed after the numbers. ${ }^{c}$ All the ratios in parentheses were the proportions of $3^{\prime}, 5^{\prime}$ - and $2^{\prime}, 5^{\prime}$-di- O-acrylribonucleosides determined by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy in terms of the area ratios of the corresponding H-1' signals. ${ }^{d}$ This yield was of the product obtained by direct crystallization of the concentrate prior to the silica gel chromatography.

* RT = Room temperature
corresponding $5^{\prime}-\mathrm{O}$-acyl derivatives $(28 \%$ and 11% yields, respectively). Compound (14), in contrast with the others, gave 4 -isopropylidenehydrazino-1-(2,3,5-tri-O-benzoyl- β-d-ribofuranosyl)pyrimidin-2($1 H$)-one (16) (22% yield) ${ }^{19}$ and $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-benzoylcytidine (47% yield) in addition to a mixture of the di- O-benzoyl derivatives (ca. 25\% yield), both of which were syrupy and could not be separated from each other. Compound (15) also failed to give crystalline diacetates, but instead gave a syrupy mixture of the corresponding $3^{\prime}, 5^{\prime}$ - and $2^{\prime}, 5^{\prime}$-diacetate (60% yield) * containing 44% of the latter, together with $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-acetyl- (11% yield), and 5^{\prime} -O-acetylcytidine (14% yield). The structures of all the products were confirmed by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy with the double resonance technique as has been reported by Fromageot et al. ${ }^{20}$ In order to check if the isolated yields of the diacylates reflected, by and large,
(b)

(a) $90-\mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. spectrum ($\delta 4-7$) of $3^{\prime}, 5^{\prime}$-di- O-benzoyladenosine (4) in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{D}_{2} \mathrm{O}$. (b) That in which $\mathrm{H}-1^{\prime}$ was irradiated.
the amount of them actually formed in the reactions, the resulting diacylate mixtures were, prior to crystallization, subjected to the ${ }^{1} \mathrm{H}$ n.m.r. spectroscopic determination. The proportions of the $3^{\prime}, 5^{\prime}$ - and $2^{\prime}, 5^{\prime}-$ diacylates obtained by comparing the area-ratios of the corresponding H-1' signals are shown in the 6 th column of Table 5. Incidentally, $N^{2}, 3^{\prime}, 5^{\prime}$-tribenzoylguanosine was quantitatively converted into $N^{2}, 2^{\prime}, 5^{\prime}$-tribenzoylguanosine on dissolution in methanol under reflux and crystallization three times; this is, presumably, a result
* Trials of crystallization of the both products were all unsuccessful.

(17) $\mathrm{B}=N^{6}$-acetyladenin-9-yl
(18) $B=$ guanin- $9-y l$
(19) $\mathrm{B}=N^{4}$-acetylcytosin-1-yl
(20) $\mathrm{B}=$ thymin-1-yl
of the latter, being much more easier to crystallize from alcohols than the former. Any correlation between the isolated yields and the proportions of products formed should therefore be estimated, consideration of acyl migration being taken into account. It is further of interest to notice that the partial O-deacylation has been induced at the 2^{\prime}-position almost regiospecifically in the cases of compounds (2), (3), and (9), judging from the pattern of the anomeric region of the ${ }^{1} \mathrm{H}$ n.m.r. spectra of their resulting mixtures. Almost the same regioselectivity in the partial O-deacylation at $70-75{ }^{\circ} \mathrm{C}$ (entries 2,4 , and 6) is also of interest in comparing the equilibration time for the foregoing di- O-acetyluridine in pyridine; ${ }^{18}$ the present results may, therefore, reflect certain effects of unforeseen factors. \dagger The diacylates obtained from (9) and (10) have recently been shown to be useful intermediates for oligonucleotide synthesis in connection with the 'Cap' structure; ${ }^{21}$ they can replace 3^{\prime} - O-acetyl- $N^{2}, 5^{\prime}$-dibenzoylguanosine ${ }^{22}$ synthesized from $N^{2}, 5^{\prime}$-dibenzoylguanosine $2^{\prime}, 3^{\prime}$-methylorthoacetate by partial hydrolysis, followed by chromatographic separation of the resultant $1: 1$ mixture of 2^{\prime} - and $3^{\prime}-O-$ acetyl- $N^{2}, 5^{\prime}$-dibenzoylguanosine. Gregoire and Neilson ${ }^{23}$ have recently proved the utility of the present procedure in the field of nucleic acid chemistry.

With the evidence of the practical utility of the partial O-deacylation procedure, we subsequently undertook an investigation of the preparative procedure for $5^{\prime}-0-$ acylribonucleosides by use of (2) and (12). The 5^{\prime} acetates have usually been prepared via $2^{\prime}, 3^{\prime}-O$-isopropylideneribonucleosides, which undergo 5^{\prime} - O-acylation, followed by O-deisopropylidenation. ${ }^{24}$ Moreover, partial O-deacylation with methanolic ammonia ${ }^{25}$ and with morpholine ${ }^{26}$ have been reported only with respect to synthesis of $5^{\prime}-O$-acetyladenosine. In the light of the study of the solvent effect (see Table 2), we prepared compound (5) and 5^{\prime} - O-benzoyluridine, the conditions and the results thus obtained being summarized in Table 6. The desired products were obtained in quantitative yields, as we expected.

Following this, we were further interested in the behaviour of fully acylated 2^{\prime}-deoxyribonucleosides toward (1), since they are devoid of the 2^{\prime}-hydroxy-

[^0]
$\mathrm{B}^{\prime}=$ adenin $-9-\mathrm{yl}$
$\mathrm{B}^{\prime}=$ guanin- $9-\mathrm{yl}$
$\mathrm{B}^{\prime}=$ cytosin-1-yl
$B^{\prime}=$ thymin-1-yl

Scheme 2

Table 6
Preparations of 5^{\prime}-O-benzoyladenosine (5) and uridine (12c) by hydrazinolysis ${ }^{a}$
$\left.\begin{array}{cccccc}\begin{array}{c}\text { Fully acylated } \\ \text { ribonucleosides } \\ \text { (Ns) }\end{array} & \overbrace{(1) / \text { Ns }} & \text { Solvent } b & \begin{array}{c}\text { Period } \\ \text { (day) }\end{array} & \begin{array}{c}\text { Yield of } \\ \text { product } \\ (\%)\end{array} \\ 1 & (2) & 6 & A & 2 & 99\end{array}\right)$
group. We chose $N^{6}, 3^{\prime}, 5^{\prime}$-triacetyl-2'-deoxyadenosine (17), $3^{\prime}, 5^{\prime}$-di- O-acetyl- 2^{\prime}-deoxyguadenosine (18), $N^{4}, 3^{\prime},-$ 5^{\prime}-triacetyl- 2^{\prime}-deoxycytidine (19), and $3^{\prime}, 5^{\prime}$-di- O-acetylthymidine (20) as the substrates for the partial O deacylation; the acetates were used here because the corresponding benzoates were less reactive than the acetates towards ($\mathbf{1}$). The conditions and the results thus obtained are summarized in Table 7. Compounds (17), (18), (19), and (20) were not susceptible to hydrazinolysis in glacial acetic acid-pyridine ($1: 4, \mathrm{v} / \mathrm{v}$), but in pyridine gave the corresponding $3^{\prime}-$ and $5^{\prime}-0-$ acetyl derivatives; the yields are shown in the table. In contrast, partial O-deacylation was unsuccessful in chloroform-methanol ($\mathbf{1 : 1 , v} \mathrm{v} / \mathrm{v}$), free $\mathbf{2}^{\prime}$-deoxyribonucleosides being given as the main product. According to Andersen et al. ${ }^{27}$ partial ammonolysis of (17) with

Scheme 3
methanolic ammonia gave the 3^{\prime}-acetate (19% yield) and 5^{\prime}-acetate (29% yield).

Surveying the results obtained here, we further performed partial O-deacylation of $N^{6}, 2^{\prime}, 5^{\prime}$-triacetyl-$3^{\prime}$-O-methyl-(21) and $N^{6}, 3^{\prime}, 5^{\prime}$-triacetyl- 2^{\prime} - O-methyladenosine (22) in order to correlate the activity of the O acetyl groups toward (1); the conditions and the results thus obtained are summarized in Table 8. A striking

Table 8
Examination of correlative activity of $2^{\prime}-O$-acetyl group of (21) and 3^{\prime}-O-acetyl group of (22) toward (1) ${ }^{a}$

Yield of product (\%)

, 2	Period	$\begin{gathered} 2^{\prime}\left(\text { or } 3^{\prime}\right)-O- \\ \text { Methyl- } \end{gathered}$	
Triacetyladenosine	(day)	5'-acetate	Diacetate
3'-O-Methyl- (21)	$2{ }^{\text {b }}$	(21a) 74	(21b) 14
2^{\prime}-O-Methyl- (22)	$8{ }^{\text {c }}$	(22a) 44	(22b) 54

${ }^{a}$ Both reactions were performed in glacial acetic acidpyridine ($\mathbf{1 : 4}, \mathrm{v} / \mathrm{v}$). $\quad{ }^{b}$ This reaction was performed by use of (1) (2.2 molar equivalents) at room temperature. ${ }^{c}$ This reaction was performed by use of (1) (3.3 molar equivalents) at room temperature.
difference was found between the O-acetyl groups in (21) and (22); namely, the $2^{\prime}-O$-acetyl group in (21) was much more easily removed than the $3^{\prime}-O$-acetyl in (22). The latter was barely removed by use of an excess of (1) even with a reaction period 4 times that used for the deacylation of compound (21). Such a remarkable difference may be rationalized as follows: (i) the O acyl groups at the 2^{\prime}-position of fully acylated ribonucleosides should be removed first in the partial O deacylation in glacial acetic acid-pyridine; (ii) the resulting 2^{\prime}-hydroxy-group may hydrogen-bond with the carbonyl oxygen of the $3^{\prime}-O$-acyl groups to make the carbonyl carbon more positively charged, the nucleophilic attack of ($\mathbf{1}$) on the carbon in pyridine then being facilitated to give the 5^{\prime}-acylates. It is of interest to find that the present results are consistent with the neighbouring-group effect for O-acyl groups under solvolytic conditions reported by Zachau and Karau. ${ }^{28, *}$ In the 2^{\prime}-deoxynucleosides, the 2^{\prime}-hydroxy-group is lacking, and thus the comparative stability of the $\mathbf{3}^{\prime}$ -

[^1]Table 7
Partial deprotection of fully acetylated 2^{\prime}-deoxyribonucleosides with hydrazine hydrate ${ }^{a}$

Entry	Nucleoside acetates (Ns)	Conditions		Yield (\%) of	
			Period		
		(1) : Ns	(day)	3'-O-Acetate	5'-O-Acetate
1	$N^{6}, 3^{\prime}, 5^{\prime}$-Triacetyl-2'-deoxyadenosine (17)	3	1	(17a) 18	(17b) 65
2	$3^{\prime}, 5^{\prime}$-Di-O-acetyl-2'-deoxyguanosine (18)	2	1	(18a) 32	(18b) 56
3	$N^{4}, 3^{\prime}, 5^{\prime}$-Triacetyl-2'-deoxycytidine (19)	2	2	(19a) 18	(19b) 38
4	$3^{\prime}, 5^{\prime}$-Di-O-acetylthymidine (20)	2	2	(20a) 32	(20b) 60

a All reactions were performed at room temperature in pyridine.
and $5^{\prime}-O$-acyl groups towards (1) can be explained in terms of (ii) above; the O-acyl groups in contrast with those of the corresponding ribonucleoside derivatives, whose $3^{\prime}-O$-acyl groups are more labile than the $5^{\prime}-\mathrm{O}$-acyl groups, give $5^{\prime}-O$-acylates quantitatively under the conditions used ($c f$. Tables 6 and 7). Furthermore, on the basis of these results the concomitant formation of the $3^{\prime}, 5^{\prime}$ - and $2^{\prime}, 5^{\prime}$-di- O-acylribonucleosides in the partial O-deacylation procedure arises, conceivably, as a result of O-acyl migration and/or equilibration between the diacylates after removal of the $2^{\prime}-O$-acyl groups. In this connection, it is indeed of interest to consider why the reactions at an elevated temperature (see entries 2, 4, and 6 in Table 5) still resulted in marked regioselectivity to give the corresponding $3^{\prime}, 5^{\prime}$-dibenzoates in excellent yields,* and why the $2^{\prime}-O$-acyl groups of $2^{\prime}, 5^{\prime}$-diacylates resulting from the acyl migration and/or equilibration can survive under these conditions. \dagger The unusual lability of the 2^{\prime} - O-acyl group of fully acylated ribonucleosides can be assumed to be due to a stronger electron-withdrawing effect of their heterocyclic moieties than the l-O-methyl group of fully acylated methyl β-Dribofuranosides, which gave the corresponding 2,5 -di-O-acylates, i.e. the $3-\mathrm{OH}$ derivatives, preferentially. \dagger

EXPERIMENTAL

Melting points are uncorrected. U.v. spectra were recorded with a Hitachi EPS-3T spectrometer for solution in ethanol. Specific rotational values were determined with a Hitachi PO-B or Carl Zeiss LEP A-1 polarimeter. ${ }^{1} \mathrm{H}$ N.m.r. spectra were recorded with a Varian EM-390 or T-60 instruments for solutions in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\left(\mathrm{SiMe}_{4}\right.$ as internal standard). ${ }^{13} \mathrm{C}$ N.m.r. spectra were recorded with a Varian CFT-20 instrument for the same solutions by Mr. K. Kushida and his staff, ANELVA Corporation. T.l.c. was performed on Merck silica gel $60 \mathrm{~F}_{254}$ precoated plates (thickness 0.25 mm) employing benzene-methanol ($9: 1$, v / v) or chloroform-methanol ($9: 1, \mathrm{v} / \mathrm{v}$) as eluant. Column chromatography was performed on Wakogel C-300 employing chloroform-methanol as eluant. Liquid-liquid chromatography (1.1.c.) was performed with a Varian LC-8520 apparatus [column of MicroPak CN-10 ($15 \mathrm{~cm} \times 2 \mathrm{~mm}$); mobile phase hexane (Silvent A) and 20% propan-2-ol in dichloromethane (Solvent B); solvent composition 25$60 \% \mathrm{~B}$ with a slope of $4 \% \mathrm{~min}^{-1}$; flow rate $100 \mathrm{ml} \mathrm{h}^{-1}$; detection by u.v. at 260 nm (Variscan apparatus). Elemental analyses were performed by the members of Laboratory of Organic Analysis, Tokyo Institute of Technology.

Pyridine used here was pretreated with 5% aqueous potassium permanganate solution at $50-60{ }^{\circ} \mathrm{C}$ before distillation, and redistille from barium oxide.

General Procedure for Examination of Reaction Conditions. -All reactions were performed by use of a solution of (3) ${ }^{11}$ $(0.1 \mathrm{mmol})$ in a solvent (3 ml), which was treated with a solution of (1) ($1.0 \mathrm{mmol} \mathrm{m}^{-1}$) under the conditions described in each Table. As for the reactions in pyridine, 10% methanol was added to effect complete dissolution of (1). The resulting solutions were respectively quenched with acetone and then diluted with chloroform to a volume of 10

[^2]ml , each of which was subjected to the l.l.c. analysis under the conditions described above in this section. Under the l.l.c. condition, (3), (4) and (5) were detected as peaks with retention times of $c a .4,6$, and 10 min .

Partial Debenzoylation of (2) with (1).---A solution of (2) ${ }^{29}$ ($790 \mathrm{mg}, 1 \mathrm{mmol}$) in glacial acetic acid-pyridine ($1: 4$, $\mathrm{v} / \mathrm{v})(10 \mathrm{ml})$ was treated with (1) $(0.16 \mathrm{ml}, 3.1 \mathrm{mmol})$ with stirring at room temperature for 8 days. The resulting mixture was quenched with acetone (5 ml) with stirring at room temperature for several hours, and then evaporated below $50^{\circ} \mathrm{C}$ (bath temperature) to give a syrup. Chromatography of the syrup was performed on the silica gel; elution with chloroform gave (3) ($55 \mathrm{mg}, 10 \%$ recovery yield), that with methanol-chloroform ($3: 97, \mathrm{v} / \mathrm{v}$) gave (4) (300 mg , 63% yield; syrup), and that with methanol-chloroform ($5: 95, \mathrm{v} / \mathrm{v}$) gave (5) ($93 \mathrm{mg}, 25 \%$ yield) as well as isopropylidenebenzohydrazide [$390 \mathrm{mg}, 68 \%$ yield based on (1); m.p. $143{ }^{\circ} \mathrm{C}$ (from acetone), lit. ${ }^{30}$ m.p. $143{ }^{\circ} \mathrm{C}$ (from acetone)], which was eluted between the fractions of (2) and (3) as a broad fraction; thus a small amount of the hydrazide still remained inseparable from the bulk of (3).

Attempted Debenzoylation of (2) with Benzohydrazide.Treatment of (2) ($1580 \mathrm{mg}, 2 \mathrm{mmol})$ with benzohydrazide $(844 \mathrm{mg}, 6.2 \mathrm{mmol})$ in glacial acetic acid-pyridine ($1: 4$, $\mathrm{v} / \mathrm{v})(20 \mathrm{ml})$ at room temperature resulted in a quantitative recovery of (2); reaction in pyridine ($20 \mathrm{n}: \mathrm{l}$) under reflux for 9 h and a similar work-up as has been described above to give (3) ($634 \mathrm{mg}, 55 \%$ yield), $N^{6}, 2^{\prime}, 3^{\prime}, 5^{\prime}$-tetrabenoyladenosine ${ }^{11}$ ($451 \mathrm{mg}, 33 \%$ yield), and $N N^{\prime}$-dibenzoylhydrazine ($533 \mathrm{mg}, 35 \%$ yield) [m.p. $243.5{ }^{\circ} \mathrm{C}$ (from ethanol); lit. ${ }^{36}$ $236{ }^{\circ} \mathrm{C}$ (from ethanol)].

Partial O-Debenzoylation of (3) with (1)-A solution of $(3)^{11}(10 \mathrm{~g}, 17.2 \mathrm{mmol})$ in glacial acetic acid-pyridine $(1: 4, \mathrm{v} / \mathrm{v})(150 \mathrm{ml})$ was treated with (1) $(3.35 \mathrm{ml}, 68.8 \mathrm{mmol})$ with stirring at room temperature for 1 day, after which further (1) ($1.67 \mathrm{ml}, 34.4 \mathrm{mmol}$) was added, and the mixture was stirred for a second day. The resulting mixture was quenched with acetone (50 ml) and worked up to give (3) $(0.5 \mathrm{~g}, 5 \%$ recovery yield), di-O-benzoyladenosine (6.6 g , 81% yield), and (5) ($0.57 \mathrm{~g}, 9 \%$ yield, after crystallization from methanol). Crystallization of the second fraction gave (4) ($5.23 \mathrm{~g}, 64 \%$ yield). The reaction at $70-75{ }^{\circ} \mathrm{C}$ for 15 h , followed by work-up, gave (4) (70% yield) by crystallization of the resulting syrupy dibenzoate (80% yield) as well as (3) (13% recovery).

Compound (4) had m.p. 193-194 ${ }^{\circ} \mathrm{C}$ (from methanol or chloroform), $[\alpha]_{\mathrm{D}}^{22}-55^{\circ}\left(c 1.3\right.$ in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right)$, $\lambda_{\max }$ (EtOH) $246 \mathrm{~nm}(\varepsilon 13400)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4}\right]$ ca. $5.7(3 \mathrm{H}, \mathrm{m}$, H-4', 5^{\prime}, and $\left.5^{\prime \prime}\right), 5.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 5.28\left(1 \mathrm{H}, \mathrm{q}, J_{2^{\prime} \cdot 3^{\prime}} 6.0\right.$ $\left.\mathrm{Hz}, \mathrm{H}-2^{\prime}\right), 6.13\left(1 \mathrm{H}, \mathrm{d}, J_{2^{\prime} \cdot 2^{\prime}-\mathrm{OH}} 6.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{OH}\right), 6.16(1 \mathrm{H}$, $\mathrm{d}, J_{1^{\prime} .2^{\prime}} 6.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{l}^{\prime}$), $7.36 \mathrm{br}\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 8.15(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-8)$, and $8.43(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$; $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4}\right] 64.1$ (C-5'), 71.3 (C-3'), 73.3 (C-2'), 79.5 (C-4'). 88.3 (C-1'), 119.6 (C-5), 140.3 (C-8), 149.6 (C-4), 152.9 (C-2), and 156.3 (C-6) (Found: C, 60.4; H, 4.45; N, 14.55. $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{6}$ requires C, $60.6 ; \mathrm{H}, 4.45 ; \mathrm{N}, \mathbf{1 4 . 7 5} \%$).
Compound (5) had m.p. $126-129{ }^{\circ} \mathrm{C}$ followed by liquefaction at $158{ }^{\circ} \mathrm{C}$ (from methanol) (lit., ${ }^{31} \mathrm{~m} . \mathrm{p} .106-108^{\circ} \mathrm{C}$, dihydrate) ; $[\alpha]_{\mathrm{D}}{ }^{18}-35.6^{\circ}$ (c 1.5 in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right), \lambda_{\text {max. }}(\mathrm{EtOH})$

[^3]$259(\varepsilon 15900)$ and $231 \mathrm{~nm}(\varepsilon 14700)$; $\lambda_{\min }(\mathrm{EtOH}) 243.5 \mathrm{~nm}$ ($\varepsilon 11600)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}_{-} \mathrm{SiMe}_{4}\right] 4.33\left(1 \mathrm{H}, \mathrm{q}, J_{3^{\prime} .4}{ }^{\prime} 3.5 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-4^{\prime}\right), c a .4 .5\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}, 5^{\prime}\right.$, and $\left.5^{\prime \prime}\right), 4.85(1 \mathrm{H}, \mathrm{m}$, $\left.J_{2^{\prime}, 3^{\prime}} 3.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.46$ and $5.65\left(2 \mathrm{H}, J_{2^{\prime}, 2^{\prime}-\mathrm{OH}} 5.5 \mathrm{~Hz}\right.$ and $J_{3^{\prime} 3^{\prime}-\mathrm{OH}} 5.5 \mathrm{~Hz}, 2^{\prime}$ - and $\left.3^{\prime}-\mathrm{OH}\right), 6.02\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} .2^{\prime}} 3.5 \mathrm{~Hz}\right.$, H-1 $)$, $7.31 \mathrm{lbr}\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 8.16$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$), and 8.33 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$); $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}_{-} \mathrm{SiMe}_{4}\right] 64.4\left(\mathrm{C}-5^{\prime}\right), 70.3\left(\mathrm{C}-3^{\prime}\right)$, 73.0 (C-2'), 81.6 (C-4'), 88.3 (C-1'), 119.4 (C-5), 140.1 (C-8), $149.1(\mathrm{C}-8), 149.4(\mathrm{C}-4), 152.8(\mathrm{C}-2)$, and $156.2(\mathrm{C}-6)$ (Found: $\mathrm{C}, 52.55 ; \mathrm{H}, 4.8 ; \mathrm{N}, 17.9 . \quad \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C , $52.45 ; \mathrm{H}, 4.9$; N, 18.0%).

Partial O-Debenzoylation of (6) with (1).—A solution of (6) ${ }^{32}(3.5 \mathrm{~g}, 5 \mathrm{mmol})$ in glacial acetic acid-pyridine ($1: 4$, $\mathrm{v} / \mathrm{v})(100 \mathrm{ml})$ was treated with (1) $(0.97 \mathrm{ml}, 20 \mathrm{mmol})$ at room temperature for 1 day. The same work-up as described above after the reaction gave $N^{2}, 3^{\prime}, 5^{\prime}$-tribenzoylguanosine (6 a) ($1.87 \mathrm{~g}, 63 \%$ yield), by crystallization of the resulting syrup ($2.83 \mathrm{~g}, 82 \%$ yield), and $N^{2}, 5^{\prime}$-dibenzoylguanosine (6 c) $(0.27 \mathrm{~g}, 11 \%$ yield) together with the recovery of (6) $\left(0.21 \mathrm{~g}, 6 \%\right.$ yield). The reaction at $70-75^{\circ} \mathrm{C}$ for 10 h by use of (6) ($3.5 \mathrm{~g}, 5 \mathrm{mmol}$) and (1) ($0.49 \mathrm{ml}, 10 \mathrm{mmol}$), followed by the same work-up, gave (6 a) ($1.66 \mathrm{~g}, 55 \%$ yield), by crystallization of the resulting syrup (77% yield), and (6c) $(9 \%$ yield) as well as (6) (13% recovery yield).

Compound (6a) had m.p. 230-231.5 (from methanol), $[\alpha]_{\mathrm{D}}{ }^{18}-11.6^{\circ}$ (c 1.5 in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right)$; $\lambda_{\max }$ (EtOH) 297 (ε $13800), 284(\varepsilon 15200), 257(\varepsilon 15300)$, and $232 \mathrm{~nm}(\varepsilon 36700)$; $\lambda_{\text {max. }}(\mathrm{EtOH}) 290(\varepsilon 13500), 273(\varepsilon 12200), 261(\varepsilon 15000)$, and $253.5 \mathrm{~nm}(\varepsilon 15200) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added] $4.6-4.8\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}, 5^{\prime}\right.$, and $\left.5^{\prime \prime}\right), 5.6-5.8(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}-3^{\prime}\right), 5.0-5.3$ ($1 \mathrm{H}, \mathrm{m}, J_{1^{\prime} .2^{\prime}} 7.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$), 6.03 ($1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{H}-\mathrm{I}^{\prime}\right)$, and $8.27(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$; $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4}\right] 64.3$ $\left(\mathrm{C}-5^{\prime}\right), 71.3\left(\mathrm{C}-3^{\prime}\right), 73.5\left(\mathrm{C}-2^{\prime}\right), 79.7\left(\mathrm{C}-4^{\prime}\right), 87.2(\mathrm{C}-1)^{\prime}$, 121.0 (C-5), 138.1 (C-8), 148.2 (C-4), 148.9 (C-2), and 155.0 (C-6) (Found: C, 60.85; H, 4.3; N, 11.3. $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 60.7 ; \mathrm{H}, 4.45 ; \mathrm{N}, 11.4 \%$).

Compound (6c) had m.p. $235-236{ }^{\circ} \mathrm{C}$ (from methanol) (lit., ${ }^{33}$ m.p. $231-232^{\circ}$), $[\alpha]_{\mathrm{D}}{ }^{18}-2.0^{\circ}$ (c 1.5 in $\mathrm{Me}_{2} \mathrm{NCHO}$); $\lambda_{\text {max. }}(\mathrm{EtOH}) 231(\varepsilon 24500)$ and $296 \mathrm{~nm}(\varepsilon 13500)$; $\lambda_{\text {shoulder }}$ (EtOH) 253-265 nm ($\varepsilon 12900$); $\lambda_{\text {min. }}(\mathrm{EtOH}) 273 \mathrm{~nm}(\varepsilon$ $10900)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added $] 5.99(1 \mathrm{H}$, $\left.\mathrm{d}, J_{1^{\prime}, 2^{\prime}} 4.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $8.24(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$; $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\right.$ $\left.\mathrm{SiMe}_{4}\right] 64.5$ ($\left.\mathrm{C}-5^{\prime}\right), 70.2\left(\mathrm{C}-3^{\prime}\right), 73.2$ ($\left.\mathrm{C}-2^{\prime}\right), 81.7\left(\mathrm{C}-4^{\prime}\right)$, $87.3\left(\mathrm{C}-1^{\prime}\right), 121.0(\mathrm{C}-5), 138.1(\mathrm{C}-8)$, $148.1(\mathrm{C}-2)$, and 155.0 (C-6) (Found: C, 56.25; H, 4.2; H, 13.75. $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{7}$. $1 / 2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 57.6 ; \mathrm{H}, 4.45 ; \mathrm{N}, 14.0 \%$).

A Quantitative Conversion of (6a) into (6b).-Compound (6a) (200 mg) was dissolved in methanol (20 ml) under reflux, and the resulting solution was allowed to cool to room temperature; this procedure was further repeated twice, giving (6c) ($185 \mathrm{mg}, 93 \%$ yield).

Compound (6b) had m.p. 145-146 ${ }^{\circ}$ (from methanol) (lit., ${ }^{33}$ m.p. $146-147{ }^{\circ} \mathrm{C}$) ; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added] $4.9-5.1\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 5.93\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime} .2^{\prime}} 4.0 \mathrm{~Hz}\right.$ and $\left.J_{2^{\prime} \cdot 3^{\prime}} 3.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.35\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1^{\prime}\right)$, and $8.30(1 \mathrm{H}$, $\mathrm{s}, \mathrm{H}-8$).

Partial O-Debenzoylation of (7).-A solution of (7) ${ }^{34}$ $(5.97 \mathrm{~g}, 10.3 \mathrm{mmol})$ in glacial acetic acid-pyridine ($1: 4$, $\mathrm{v} / \mathrm{v})(60 \mathrm{ml})$ was treated with (1) ($1.0 \mathrm{ml}, 21 \mathrm{mmol}$) at room temperature for 2 days, and the resulting solution was worked up as above described to give $3^{\prime}, 5^{\prime}$-di- O-benzoylinosine (7a) ($2.49 \mathrm{~g}, 51 \%$ yield) by crystallization of the resulting syrup ($3.6 \mathrm{~g}, 74 \%$ yield), and $5^{\prime}-O$-benzoylinosine (7 c) $(0.38 \mathrm{~g}, 10 \%$ yield) together with recovery of (7) $(0.58 \mathrm{~g}$, 10% yield). The reaction of (7) ($2.9 \mathrm{~g}, 5 \mathrm{mmol}$) in the
solvent (30 ml) at $70-75^{\circ} \mathrm{C}$, followed by the same work-up, gave (7a) ($1.24 \mathrm{~g}, 52 \%$ yield) by crystallization of the syrup ($1.9 \mathrm{~g}, 80 \%$ yield), and the recovery of (7) $(0.46 \mathrm{~g}, 16 \%$ yield).
Compound (7a) had m.p. $167-168{ }^{\circ} \mathrm{C}$ (from methanol), $[\alpha]_{\mathrm{D}}{ }^{22}-60^{\circ}\left(c 1.0\right.$ in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right)$; $\lambda_{\text {max. }}(\mathrm{EtOH}) 230.5 \mathrm{~nm}$ ($\varepsilon 25700$), $\lambda_{\text {shoulder }}(\mathrm{EtOH}) 251(\varepsilon 11300), 273(\varepsilon 5900)$, and $281.5 \mathrm{~nm}(\varepsilon 4000) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added] $5.85\left(1 \mathrm{H}, \mathrm{m}, J_{2^{\prime}, 3^{\prime}} 7.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.26(1 \mathrm{H}, \mathrm{t}$, $\left.J_{1^{\prime}, 2^{\prime}} 7.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.20\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1^{\prime}\right), 8.03(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$, and $8.40(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$; $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4}\right] 64.1\left(\mathrm{C}-5^{\prime}\right), 71.8$ (C-3'), 73.2 (C-2'), 79.7 (C-4'), 88.3 (C-1'), 125.1 (C-5), 139.5 (C-8), 146.1 (C-2), 148.5 (C-4), and 156.7 (C-6) (On drying over $\mathrm{P}_{2} \mathrm{O}_{5}$ under 0.6 mmHg at $110^{\circ} \mathrm{C}$ for 6 h , Found: C, $60.5 ; \mathrm{H}, 4.25 ; \mathrm{N}, 11.75 . \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires C , 60.5 ; $\mathrm{H}, 4.25$; $\mathrm{N}, 11.8 \%$).

The $2^{\prime}, 5^{\prime}$-dibenzoate in the residual syrup had $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2}-\right.$ SO-SiMe ${ }_{4} ; \mathrm{D}_{2} \mathrm{O}$ was added] 6.46 ($1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 4.5 \mathrm{~Hz}$, H-1').

Compound (7c) had m.p. $169{ }^{\circ} \mathrm{C}$ (from methanol), $[\alpha]_{\mathbf{p}}{ }^{18}$ $-55.5^{\circ}\left(c 1.5\right.$ in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right) ; ~ \lambda_{\text {max. }}$ (EtOH) $232 \mathrm{~nm}(\varepsilon 16000)$. $\lambda_{\text {shoulder }}(\mathrm{EtOH}) 259(\varepsilon 10400)$ and $273 \mathrm{~nm}(\varepsilon 4600)$ $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added $] 4.3-4.7(3 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-4^{\prime}, 5^{\prime}$, and $5^{\prime \prime} ; 4.57\left(1 \mathrm{H}, \mathrm{q}, J_{3^{\prime}, 4^{\prime}} 9.0 \mathrm{~Hz}, J_{2^{\prime}, 3^{3}} 4.5 \mathrm{~Hz}\right.$, and $\left.J_{3^{\prime}, 3^{\prime}-\mathrm{OH}} 6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.82\left(1 \mathrm{H}, \mathrm{t}, J_{1^{\prime} .2^{\prime}} 4.5 \mathrm{~Hz}\right.$ and $\left.J_{2^{\prime} \cdot 2^{\prime} \mathrm{OH}} 6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$ [$5.52\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime}-\mathrm{OH}\right)$ and $5.72(1 \mathrm{H}, \mathrm{d}$, $\left.2^{\prime}-\mathrm{OH}\right)$ were observed prior to addition of $\left.\mathrm{D}_{2} \mathrm{O}\right], 6.05(1 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{H}-1^{\prime}\right), 8.10(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$, and $8.33(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$; $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}_{\left.-\mathrm{SiMe}_{4}\right]} 64.6\left(\mathrm{C}-5^{\prime}\right), 70.5\left(\mathrm{C}-3^{\prime}\right), 73.7\left(\mathrm{C}-2^{\prime}\right)\right.$, 82.2 (C-4'), 88.7 (C-1'), 125.1 (C-5), 139.7 (C-8), 146.3 (C-2), $148.7(\mathrm{C}-4)$, and 157.2 (C-6) (Found: C, 53.8 ; H, 4.35 ; $\mathrm{N}, 14.8$. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{6} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 53.55 ; \mathrm{H}, 4.5$; N, $14.7 \%)$.

Partial O-Deacetylation of (8).-A solution of (8) ${ }^{35}(1.97 \mathrm{~g}$, 5 mmol) in the solvent (50 ml) was treated with (1) $(0.29 \mathrm{ml}$, 6 mmol) at room temperature for 1 day, and the resulting solution was worked up as described above to give $3^{\prime}, 5^{\prime}$ -di- O-acetyladenosine (8 a) ($0.93 \mathrm{~g}, 53 \%$ yield) by crystallization of the resulting syrup ($1.34 \mathrm{~g}, 76 \%$ yield), and (8) ($0.19 \mathrm{~g}, 10 \%$ recovery yield).

Compound (8a) had m.p. $172-173{ }^{\circ} \mathrm{C}$ (from methanol) (lit. ${ }^{9}$ m.p. $175-176{ }^{\circ} \mathrm{C}$), $[\alpha]_{\mathrm{D}}{ }^{18}-50.6^{\circ}\left(c 1.5\right.$ in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right)$; $\lambda_{\text {max. }}(\mathrm{EtOH}) 259 \mathrm{~nm}(\varepsilon \quad 13600) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4}\right.$; $\mathrm{D}_{2} \mathrm{O}$ was added] $2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), c a$. 4.3 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}, 5^{\prime}$, and $5^{\prime \prime}$), $5.2-5.4\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 5.05$ $\left(1 \mathrm{H}, \mathrm{t}, J_{1^{\prime}, 2^{\prime}} 6.0 \mathrm{~Hz}\right.$ and $\left.J_{2^{\prime} \cdot 3^{\prime}} 6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.93(1 \mathrm{H}, \mathrm{d}$, $\mathrm{H}-1^{\prime}$), 8.18 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$), and 8.37 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$) (Found: C, $47.9 ; \mathrm{H}, 4.9 ; \mathrm{N}, 20.2 . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{6}$ requires $\mathrm{C}, 47.85 ; \mathrm{H}$, 4.9 ; N, 19.95%).

Partial O-Deacetylation of (9).-A solution of (9) ${ }^{35}$ (5.66 g, 12.5 mmol) in the solvent (100 ml) was treated with (1) $(0.73 \mathrm{ml}, 15 \mathrm{mmol})$ at room temperature for 2 days, and worked up as described above to give $N^{2}, 3^{\prime}, 5^{\prime}$-triacetylguanosine (9 a) ($2.67 \mathrm{~g}, 52 \%$ yield) by crystallization of the resulting syrupy mixture ($3.54 \mathrm{~g}, 69 \%$ yield), and (9) (0.53 g , 9% recovery yield).
Compound (9a) had m.p. 131-132 ${ }^{\circ} \mathrm{C}$ (from methanol), $[\alpha]_{\mathrm{D}}{ }^{18}-36^{\circ}\left(c 1.5\right.$ in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right) ; \lambda_{\text {max. }}(\mathrm{EtOH}) 280(\varepsilon 11600)$, 259 ($\varepsilon 15700$), and $254 \mathrm{~nm}(\varepsilon 15700)$; $\lambda_{\text {min. }}(\mathrm{EtOH}) 271$ ($\varepsilon 11600$) and $257 \mathrm{~nm}(\varepsilon 15600)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}_{2} \mathrm{SiMe}_{4}\right.$; $\mathrm{D}_{2} \mathrm{O}$ was added] $2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{NAc}), 5.2-5.4\left(1 \mathrm{H}, \mathrm{m}, J_{2^{\prime} \cdot 3^{\prime}} 6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$, $4.80\left(1 \mathrm{H}, \mathrm{t}, J_{1^{\prime} .2^{\prime}} 6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.90\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1^{\prime}\right)$, and 8.00 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$) (Found: C, 43.25 ; H, 4.95 ; N, 15.85. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{8} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 43.15 ; \mathrm{H}, 5.2 ; \mathrm{N}, 15.75 \%$).
N^{2}-Benzoylation of $2^{\prime}, 3^{\prime}, 5^{\prime}$-Tri-O-acetylguanosine.-A suspension of $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-acetylguanosine ${ }^{35}$ (15 g) in pyridine (100 ml) was treated with benzoyl chloride (12 ml) at $50-60^{\circ} \mathrm{C}$ for h with stirring. The resulting mixture was poured into ice-water, and the mixture was extracted with chloroform. The organic layer was then washed successively with lm-hydrochloric acid, aqueous sodium hydrogen carbonate solution, and water, and was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The organic layer was, after filtering off the desiccant, evaporated to dryness, and the residue chromatographed on a column of silica gel by use of chloro-form-methanol to give $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O-acetyl- N^{2}-benzoylguanosine (10) ($16.6 \mathrm{~g}, 87 \%$ yield; syrup), which was identified with an authentic specimen ${ }^{23}$ by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy.

Partial O-Deacetylation of (10).—A solution of (10) (7.87 g, 15.3 mmol) in the solvent (50 ml) was treated with (1) (0.89 $\mathrm{ml}, 18.4 \mathrm{mmol}$) at room temperature for 1 day, and the resulting mixture was evaporated to a syrup; crystallization of the syrup gave $3^{\prime}, 5^{\prime}$-di- O-acetyl- N^{2}-benzoylguanosine (10 a) ($3.03 \mathrm{~g}, 42 \%$ yield).

Compound (10a) had m.p. $127-128{ }^{\circ} \mathrm{C}$ (from methanol) (lit., ${ }^{23}$ m.p. $131-133^{\circ} \mathrm{C}$), $[\alpha]_{\mathrm{D}}{ }^{18}-21^{\circ}$ (c 1.5 in $\mathrm{Me}_{2} \mathrm{NCHO}$); $\lambda_{\text {max. }}(\mathrm{EtOH}) 269(\varepsilon 14300), 264(\varepsilon 13700), 257(\varepsilon 13900)$, and $237.5 \mathrm{~nm}(\varepsilon 16300)$; $\lambda_{\text {min. }}(\mathrm{EtOH}) 273$ ($\varepsilon 10200$), $262(\varepsilon 13600)$, and $252.5 \mathrm{~nm}(\varepsilon 13700)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}_{-} \mathrm{SiMe}_{4}\right.$; $\mathrm{D}_{2} \mathrm{O}$ was added] $2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.18(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $5.3-5.5\left(1 \mathrm{H}, \mathrm{m}, J_{2^{\prime} .3^{\prime}} 6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.00\left(1 \mathrm{H}, \mathrm{t}, J_{1^{\prime} 2^{\prime}}\right.$ $\left.6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.03$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1^{\prime}$), and $8.33(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$ (Found: C, 51.25; H, 4.75; N, 14.2. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C, $51.55 ; \mathrm{H}, 4.75 ; \mathrm{N}, 14.3 \%$).

Partial O-Deacetylation of (11).-A solution of (11) ${ }^{35}$ ($1.18 \mathrm{~g}, 3 \mathrm{mmol}$) in solvent (20 ml) was treated with (1) $(0.16 \mathrm{ml}, 0.33 \mathrm{mmol})$ at room temperature for 2 days, and the resulting mixture was worked up as described above to give $2^{\prime}, 5^{\prime}$-di- O-acetylinosine (llb) ($0.32 \mathrm{~g}, 30 \%$ yield) by crystallization of the resulting syrup ($0.90 \mathrm{~g}, 85 \%$ yield) at room temperature for 2 weeks, and $5^{\prime}-O$-acetylinosine (11c) ($0.1 \mathrm{~g}, 10 \%$ yield).

Compound (llb) had m.p. $210-211^{\circ} \mathrm{C}$ (from methanol), $[\alpha]_{\mathrm{D}}{ }^{22}-53^{\circ}\left(c 0.8\right.$ in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right)$; $\lambda_{\text {max. }}(\mathrm{EtOH}) 244 \mathrm{~nm}(\varepsilon$ $10800)$; $\lambda_{\text {shoulder }}(\mathrm{EtOH}) 250(\varepsilon 9800)$ and $274 \mathrm{~nm}(\varepsilon 2800)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added $] 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $2.07(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 4.0-4.4\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}, 5^{\prime}\right.$, and $\left.5^{\prime \prime}\right)$, $4.4-4.7\left(1 \mathrm{H}, \mathrm{m}, J_{2^{\prime} .3^{3}} 4.5 \mathrm{~Hz}, \mathrm{H}^{\prime} 3^{\prime}\right), 5.61\left(1 \mathrm{H}, \mathrm{t}, J_{1^{\prime} .2^{\prime}} 4.5\right.$ $\mathrm{Hz}, \mathrm{H}-2^{\prime}$), 6.12 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1^{\prime}$), 8.03 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$), and 8.23 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$) (after drying over $\mathrm{P}_{2} \mathrm{O}_{5}$ under 0.2 mmHg at $110^{\circ} \mathrm{C}$ for 5 h , Found: $\mathrm{C}, 47.3 ; \mathrm{H}, 4.65 ; \mathrm{N}, 16.1 . \mathrm{C}_{14} \mathrm{H}_{16}{ }^{-}$ $\mathrm{N}_{4} \mathrm{O}_{7}$ requires $\mathrm{C}, 47.75 ; \mathrm{H}, 4.6 ; \mathrm{N}, 15.9 \%$).

Compound (11c) had m.p. $117-118{ }^{\circ} \mathrm{C}$ followed by liquefaction at $171{ }^{\circ} \mathrm{C}$ (from methanol), $[\alpha]_{\mathrm{v}}{ }^{18}-32.4^{\circ}$ (c 1.5 in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right)$; $\lambda_{\text {max. }}(\mathrm{EtOH}) 249(\varepsilon 10700)$ and 244 nm ($\varepsilon 10700$) ; $\lambda_{\text {min. }}(\mathrm{EtOH}) 247 \mathrm{~nm}(\varepsilon 10500)$; $\lambda_{\text {shoulder }}(\mathrm{EtOH})$ $274 \mathrm{~nm}(\varepsilon 3900)$; $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added $]$ $4.0-4.4\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}, 4^{\prime}, 5^{\prime}\right.$, and $\left.5^{\prime \prime}\right), 4.55\left(1 \mathrm{H}, \mathrm{t}, J_{1^{\prime} .2^{\prime}} 4.5\right.$ Hz and $\left.J_{2^{\prime} .3^{\prime}} 4.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.88\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1^{\prime}\right), 8.05(1 \mathrm{H}$, $\mathrm{s}, \mathrm{H}-8$), and 8.28 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$) (Found: C, 44.8; H, 4.65 ; $\mathrm{N}, 17.8$. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{6} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 45.15 ; \mathrm{H}, 4.75$; $\mathrm{N}, 17.55 \%$).

Partial O-Debenzoylation of (12).—A solution of (12) ${ }^{36}$ ($1.11 \mathrm{~g}, 2 \mathrm{mmol}$) in solvent (30 ml) was treated with (1) $(0.12 \mathrm{ml}, 2.4 \mathrm{mmol})$ at room temperature for 4 days, and the resulting mixture was worked as described above to give $3^{\prime}, 5^{\prime}$-di- O-benzoyluridine (12 a) ($0.35 \mathrm{~g}, 39 \%$ yield) by crystallization of the resulting syrup ($0.59 \mathrm{~g}, 65 \%$ yield), and
5^{\prime}-O-benzoyluridine (12 c) ($0.1 \mathrm{~g}, 13 \%$ yield).
Compound (12a) had m.p. $199.5-200.5^{\circ} \mathrm{C}$ (from methanol) (lit. ${ }^{24}$ m.p. $187-189^{\circ} \mathrm{C}$), $[\alpha]_{\mathrm{D}}{ }^{18}-35.5^{\circ}$ (c 1.5 in $\mathrm{Me}_{2}-$ $\mathrm{NCHO}) ; ~ \lambda_{\text {max. }}$ (EtOH) $258(\varepsilon 11000)$ and $230 \mathrm{~nm}(\varepsilon 24400)$; $\lambda_{\text {min. }}(\mathrm{EtOH}) 250 \mathrm{~nm}(\varepsilon 9000) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added] $4.4-4.7$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, 4^{\prime}, 5^{\prime}$, and $5^{\prime \prime}$), $5.4-5.6$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 5.62\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 8 \mathrm{~Hz}, \mathrm{H}-5\right)$, and $5.88(1 \mathrm{H}$, d, $\left.J_{1^{\prime} .2^{\prime}} 6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right) ; \delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4}\right] 64.0\left(\mathrm{C}-5^{\prime}\right), 71.2$ (C-3'), 72.6 (C-2'), 78.8 (C-4'), 89.7 (C-1'), 102.3 (C-5), 141.1 (C-6), 150.6 (C-2), and 163.1 (C-4) (Found: C, 60.7; H, $4.45 ; \mathrm{N}, 6.05$. $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\mathrm{C}, 61.05 ; \mathrm{H}, 4.45 ; \mathrm{N}$, $6.2 \%)$.

The $2^{\prime}, 5^{\prime}$-dibenzoate in the residual syrup had $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2}-\right.$ $\mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}$ was added] $6.08\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} .2^{\prime}} 3 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$.

Compound (12c) had m.p. 163-164 ${ }^{\circ} \mathrm{C}$ (from methanol) (lit. . ${ }^{24}$ m.p. $169-170^{\circ} \mathrm{C}$), $[\alpha]_{\mathrm{D}}{ }^{18}-5.2^{\circ}\left(c 1.5\right.$ in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right)$; $\lambda_{\text {max. }}(\mathrm{EtOH}) 261(\varepsilon 10300)$ and $230 \mathrm{~nm}\left(\varepsilon 14600\right.$; $\lambda_{\text {min. }}$ (EtOH) $249 \mathrm{~nm}(\varepsilon 7300)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added] $4.1-4.4\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, 4^{\prime}, 5^{\prime}\right.$, and $\left.5^{\prime \prime}\right), 4.5-4.7(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}-\mathrm{3}^{\prime}\right), 5.50\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 9 \mathrm{~Hz}, \mathrm{H}-5\right)$, and $5.86(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1^{\prime} .2^{\prime}} 2.3 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right) ; \delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4}\right] 65.2$ (C-5'), 70.8 ($\mathrm{C}-3^{\prime}$), 73.9 ($\left.\mathrm{C}-2^{\prime}\right), 82.1\left(\mathrm{C}-4^{\prime}\right), 90.3\left(\mathrm{C}-1^{\prime}\right), 103.0(\mathrm{C}-5)$, 141.8 (C-6), 151.6 (C-2), and 164.1 (C-4) (Found: C, 55.05 ; H, 4.6; N, 8.0. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires C, $55.15 ; \mathrm{H}, 4.65$; N, 8.05%).

Partial O-Deacetylation of (13).—A solution of (13) ${ }^{37}$ $(1.11 \mathrm{~g}, 3 \mathrm{mmol})$ in solvent (30 ml) was treated with (1) ($0.18 \mathrm{ml}, 3.6 \mathrm{mmol}$) at room temperature for 3.5 h , and the resulting solution was worked up as described above to give $3^{\prime}, 5^{\prime}$-di-O-acetyluridine (13 a) ($0.45 \mathrm{~g}, 46 \%$ yield) by crystallization of the resulting syrup ($0.74 \mathrm{~g}, 76 \%$ yield), and $5^{\prime}-O-$ acetyluridine (13c) ($0.10 \mathrm{~g}, 11 \%$ yield).

Compound (13a) had m.p. $150-152{ }^{\circ} \mathrm{C}$ (from methanol) (lit., ${ }^{9}$ m.p. $152-154{ }^{\circ} \mathrm{C}$), $[\alpha]_{\mathrm{D}}{ }^{18}-6.4^{\circ}$ (c 1.5 in $\mathrm{Me}_{2} \mathrm{NCHO}$); $\lambda_{\text {max. }}(\mathrm{EtOH}) 259 \mathrm{~nm}(\varepsilon 9600) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}_{2}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added] $2.10(6 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, ca. $4.4\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, 4^{\prime}, 5^{\prime}\right.$, and $\left.5^{\prime \prime}\right), 5.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 5.80\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 8.3 \mathrm{~Hz}, \mathrm{H}-5\right)$, $5.90\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} .2^{\prime}} 5.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$, and $7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-6)$ (Found: C, 47.7; H, 4.95; N, 8.61. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8}$ requires C, 47.6 ; H, 4.9 ; N, 8.55%).

Compound (13c) had m.p. $162-163{ }^{\circ} \mathrm{C}$ (from methanol) (lit., ${ }^{37} \mathrm{~m} . \mathrm{p} .163-164{ }^{\circ} \mathrm{C}$), $[\alpha]_{\mathrm{D}}{ }^{18}-2.7^{\circ}$ (c 1.5 in $\mathrm{Me}_{2} \mathrm{NCHO}$); $\lambda_{\text {max. }}(\mathrm{EtOH}) 261 \mathrm{~nm}(\varepsilon 9200) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added] $2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.9-4.4\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, 3^{\prime}\right.$, $4^{\prime}, 5^{\prime}$, and $5^{\prime \prime}$), $5.67\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 7.5 \mathrm{~Hz}, \mathrm{H}-5\right), 5.73(1 \mathrm{H}, \mathrm{d}$, $J_{1^{\prime} .2^{\prime}} 3.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), and 7.57 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-6$) (Found: C, $46.15 ; \mathrm{H}, 5.0 ; \mathrm{N}, 9.85 . \quad \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\mathrm{C}, 46.15 ; \mathrm{H}$, 4.95 ; N, 9.8%).

Attempted Partial O-Debenzoylation of (14).-A solution of (14) ${ }^{38}(1.29 \mathrm{~g}, 2 \mathrm{mmol})$ in solvent $(30 \mathrm{ml})$ was similarly treated with (1) ($0.3 \mathrm{ml}, 6 \mathrm{mmol}$) at room temperature for 8 days, and the resulting solution was worked up as described above to give 4 -isopropylidenehydrazino-1-(2,3,5-tri-O-benzoyl- β-d-ribofuranosyl)pyrimidin-2(1H)-one (16) (0.27 g , 22% yield) and a mixture of $3^{\prime}, 5^{\prime}$ - and $2^{\prime}, 5^{\prime}$-di- O-benzoylcytidine ($0.22 \mathrm{~g}, 25 \%$ yield) together with $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O benzoylcytidine ($0.51 \mathrm{~g}, 47 \%$ yield).

Compound (16) had m.p. 209.5-211 ${ }^{\circ} \mathrm{C}$ (from methanol), $[\alpha]_{\mathrm{D}}{ }^{22}-76^{\circ}$ (c 1.5 in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right)$; $\lambda_{\text {max. }}$ (EtOH) $283 \mathrm{~nm}(\varepsilon$ $18300)$; $\lambda_{\text {min. }}(\mathrm{EtOH}) 254 \mathrm{~nm}(\varepsilon 11300)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\right.$ $\left.\mathrm{SiMe}_{4}\right] c a .4 .7\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}, 5^{\prime}\right.$, and $\left.5^{\prime \prime}\right), 5.61\left(1 \mathrm{H}, \mathrm{d}, J_{5.6}\right.$ $8.3 \mathrm{~Hz}, \mathrm{H}-5)$, ca. $5.8\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$, and $\left.3^{\prime}\right), 6.39(1 \mathrm{H}, \mathrm{d}$, $J_{1^{\prime} .2^{\prime}} 6.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), and $6.90(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-6$) (Found: C, $65.0 ; \mathrm{H}, 5.0 ; \mathrm{N}, 9.05 . \quad \mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{8}$ requires C, 64.9; H, 4.95; N, 9.2\%).

A mixture of 3,5- and 2,5-di-O-benzoylcytidine was syrupy and had $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4}\right] 5.87\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} .2^{\prime}} 3.8\right.$ $\mathrm{Hz}, \mathrm{H}-1^{\prime}$ of the former) and $6.03\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} .2^{\prime}} 3.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{l}^{\prime}\right.$ of the latter) (Found: $\mathrm{C}, 61.3 ; \mathrm{H}, 4.8 ; \mathrm{N}, 9.5 . \mathrm{C}_{23} \mathrm{H}_{21}{ }^{-}$ $\mathrm{N}_{3} \mathrm{O}_{7}$ requires $\mathrm{C}, 61.2 ; \mathrm{H}, 4.7 ; \mathrm{N}, 9.3 \%$).
$2^{\prime}, 3^{\prime}, 5$-Tri- O-benzoylcytidine (powder) had m.p. 183$184{ }^{\circ} \mathrm{C}$ (from ethanol) (lit., ${ }^{11} \mathrm{~m} . \mathrm{p} .183-184{ }^{\circ} \mathrm{C}$).

Attempted Partial O-Deacetylation of (15).-A solution of (15) ${ }^{39}(0.88 \mathrm{~g}, 2.1 \mathrm{mmol})$ in solvent $(30 \mathrm{ml})$ was treated with (1) $(0.23 \mathrm{ml}, 4.6 \mathrm{mmol})$ at room temperature for 3 h , and the resulting solution was worked up as described above to give a mixture of $3^{\prime}, 5$ - and $2^{\prime}, 5^{\prime}-\mathrm{di}-O$-acetylcytidine $(0.42 \mathrm{~g}$, 60% yield) and 5 -O-acetylcytidine (15 c) $(0.08 \mathrm{~g}$, 14% yield).

The mixture (syrup) had $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added] $2.03\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OAc}\right.$ of the diacetates), $5.02\left(\mathrm{~m}, \mathrm{H}-3^{\prime}\right.$ of the former), 5.19 (dd, H-2' of the latter), and $7.63(1 \mathrm{H}, \mathrm{d}$, $J_{5.6} 7.5 \mathrm{~Hz}, \mathrm{H}-6$ of the diacetates) (Found: C, $47.75 ; \mathrm{H}$, $5.35 ; \mathrm{N}, 12.75 . \quad \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires $\mathrm{C}, 47.7 ; \mathrm{H}, 5.25 ; \mathrm{N}$, 12.85%).

Compound ($\mathbf{1 5 c})^{40}$ (syrup) had $[\alpha]_{\mathrm{D}}{ }^{18}+22^{\circ}(c \quad 0.8$ in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right) ; \lambda_{\text {max. }}(\mathrm{EtOH}) 270 \mathrm{~nm}(\varepsilon 8200)$ [lit., $\mathrm{E}^{40} \lambda_{\text {max. }}$ $\left(\mathrm{H}_{2} \mathrm{O}\right) 270$ and 230 nm$]: \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added] $2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), c a .4 .0\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4,5\right.$, and $\left.5^{\prime \prime}\right)$, ca. $4.3\left(2 \mathrm{H}, \mathrm{nl}, \mathrm{H}-2^{\prime}\right.$ and $\left.3^{\prime}\right), 5.93\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 8.0 \mathrm{~Hz}, \mathrm{H}-5\right)$, ($1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} .2^{\prime}} 3.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), and $7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-6)$.
Compound (5) from (2).-A solution of (2) ($1.58 \mathrm{~g}, 2 \mathrm{mmol}$) in pyridine (50 ml) was treated with (1) $(0.58 \mathrm{ml}, 12 \mathrm{mmol})$ at room temperature for 3 days, and worked up as described above to give (5) $(0.74 \mathrm{~g}, 99 \%$ yield $)$. The reaction in chloroform-methanol ($1: 1, \mathrm{v} / \mathrm{v}$) (50 ml) with (1) at room temperature for 2 days, followed by quenching with acetone, evaporation, dilution with chloroform, removal of insoluble material by filtration, and crystallization from methanol, gave (5) ($0.63 \mathrm{~g}, 98 \%$ yield).

Compound (12c) from (12).-A solution of (12) (1.11 g, 2 mmol) in chloroform-methanol ($1: 1, \mathrm{v} / \mathrm{v}$) (30 ml) was treated with (1) ($0.29 \mathrm{ml}, 6 \mathrm{mmol}$) at room temperature for 2 days, followed by the column chromatographic separation and crystallization from ethanol, gave (12c) $(0.61 \mathrm{~g}, 87 \%$ yield).

Partial O-Deacetylation of (17).-A solution of (17) ${ }^{27}$ $(667 \mathrm{mg}, 2 \mathrm{mmol})$ in pyridine (20 ml) was treated with (1) $(0.3 \mathrm{ml}, 6 \mathrm{mmol})$ at room temperature for 1 day, and worked up in the same way as described for compound (3) to give $3^{\prime}-O$-acetyl- 2^{\prime}-deoxyadenosine (17 a) ($110 \mathrm{mg}, 18 \%$ yield) and 5^{\prime}-O-acetyl-2'-deoxyadenosine (17 b) ($379 \mathrm{mg}, 65 \%$ yield) together with $3^{\prime}, 5^{\prime}$-di- O-acetyl- 2^{\prime}-deoxyadenosine ($90 \mathrm{mg}, 13 \%$ yield).
$3^{\prime}, 5^{\prime}$-di-O-acetyl-2'-deoxyadenosine (syrup) had $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2^{-}}\right.$ $\mathrm{SO}-\mathrm{SiMe}_{4}$] $2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.50(1 \mathrm{H}$, ddd, $J_{1^{\prime} .2^{\prime}} 6.0 \mathrm{~Hz}, J_{2^{\prime} .2^{\prime \prime}} 13.5 \mathrm{~Hz}$, and $J_{2^{\prime} .3^{\prime}} 2.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$), $2.97\left(1 \mathrm{H}\right.$, ddd, $J_{1^{\prime} .2^{\prime \prime}} 7.0 \mathrm{~Hz}$ and $\left.J_{2^{\prime \prime} .3^{\prime}} 7.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), c a$. 4.3 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}, 5^{\prime}$, and $5^{\prime \prime}$), $5.26-5.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right)$, $6.35\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-\mathrm{l}^{\prime}\right), 8.00(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$, and $8.23(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$.

Compound (17a) had m.p. $218.0-219.0^{\circ} \mathrm{C}$ (from ethyl acetate) (lit., ${ }^{27}$ m.p. $211-212.5^{\circ} \mathrm{C}$), $[\alpha]_{\mathrm{D}}{ }^{18}-32.8^{\circ}(c 1.35$ in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right)$; $\lambda_{\text {max. }}(\mathrm{EtOH}) 260 \mathrm{~nm}(\varepsilon 14500) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\right.$ $\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}$ was added) $2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.50(1 \mathrm{H}, \mathrm{ddd}$, $J_{1^{\prime} .2^{\prime}} 6.0 \mathrm{~Hz}, J_{2^{\prime} .2^{\prime \prime}} 14.0 \mathrm{~Hz}$, and $J_{2^{\prime} \cdot 3^{\prime}} c a$. $\left.1.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$, $2.65\left(1 \mathrm{H}, \mathrm{ddd}, J_{1^{\prime} .2^{\prime \prime}} 7.5 \mathrm{~Hz}\right.$, and $\left.J_{2^{\prime \prime} .3^{\prime}} 7.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right)$, $3.6-3.8\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime} 5^{\prime}\right.$ and $\left.5^{\prime}\right)$, $4.1-4.2\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}\right)$, $5.35-5.6\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 6.40\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-\mathrm{l}^{\prime}\right), 8.17(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-8$), and 8.32 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$) (Found: C, 48.9 ; H, 5.15 ; N, 24.1. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires $\mathrm{C}, 49.15 ; \mathrm{H}, 5.16 ; \mathrm{N}, 23.9 \%$).

Compound (17b) (syrup) had $[\alpha]_{\mathrm{D}}{ }^{18}-7.6^{\circ}$ (c 1.65 in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right)$; $\lambda_{\text {max. }}(\mathrm{EtOH}) 260 \mathrm{~nm}(\varepsilon 15000)$ (lit., ${ }^{27}$ m.p. $140-141^{\circ} \mathrm{C}$; $\lambda_{\text {max }}(\mathrm{EtOH}) 260 \mathrm{~nm}(\varepsilon 14400] ; \delta_{\mathrm{H}[}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\right.$ $\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}$ was added] $2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.36(1 \mathrm{H}, \mathrm{ddd}$, $J_{1^{\prime}, 2^{\prime}} 6.0 \mathrm{~Hz}, J_{2^{\prime}, 2^{\prime \prime}} 14.0 \mathrm{~Hz}$, and $\left.J_{2^{\prime}, 3^{\prime}} 4.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 2.90$ ($1 \mathrm{H}, \mathrm{dt}, J_{1^{\prime} .2^{\prime \prime}} 6.0 \mathrm{~Hz}$ and $J_{2^{\prime \prime} .3^{\prime}} 6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}$), $3.9-4.1$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}$), $4.2-4.4\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right.$ and $5^{\prime \prime}$), 4.4-4.6 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$), $6.40\left(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-\mathrm{l}^{\prime}\right), 8.20(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$, and 8.33 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$) (Found: C, 49.15 ; H, 5.2; N, 23.6. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires C, $49.15 ; \mathrm{H}, 5.15 ; \mathrm{N}, 23.9 \%$).

Partial O-Deacetylation of (18).—A solution of (18) ${ }^{41}$ $(550 \mathrm{mg}, 1.5 \mathrm{mmol})$ in pyridine (10 ml) was treated with (1) ($0.15 \mathrm{ml}, 3 \mathrm{mmol}$) at room temperature for 1 day, followed by work-up, to give $3^{\prime}-O$-acetyl- 2^{\prime}-deoxyguanosine (18a) ($150 \mathrm{mg}, 32 \%$ yield) and $5^{\prime}-O$-acetyl- 2^{\prime}-deoxyguanosine (18b) ($260 \mathrm{mg}, 56 \%$ yield); (18) ($40 \mathrm{mg}, 8 \%$ yield) was recovered unchanged.

Compound (18a) had m.p. $>250{ }^{\circ} \mathrm{C}$ (from methanol) (lit., ${ }^{41}$ m.p. $>240{ }^{\circ} \mathrm{C}$), $[\alpha]_{\mathrm{D}}{ }^{18}-13.3^{\circ}\left(c 1.5\right.$ in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right)$; $\lambda_{\text {max. }}(\mathrm{EtOH}) 254 \mathrm{~nm}(\varepsilon 13800) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added] $2.07(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.40\left(1 \mathrm{H}\right.$, ddd, $J_{1^{\prime} .2^{\prime}} 6.0$ $\mathrm{Hz}, J_{2^{\prime} 2^{\prime \prime}} 13.5 \mathrm{~Hz}$, and $\left.J_{2^{\prime} 3^{\prime}} 6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 2.80(1 \mathrm{H}$, dd, $\left.J_{1^{\prime} .2^{\prime \prime}} 9.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 3.5-3.7\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right.$ and $\left.5^{\prime \prime}\right), 3.9-$ $4.1\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}\right), 5.35-5.4\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 6.13(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{H}-\mathrm{l}^{\prime}$), and 7.95 ($\mathrm{l} \mathrm{H}, \mathrm{s}, \mathrm{H}-8$) (Found: C, 45.25 ; H, 4.75 ; $\mathrm{N}, 21.8$. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 45.3 ; \mathrm{H}, 5.05$; N, 22.0 \%) .

Compound (18 b) had m.p. $166-168{ }^{\circ} \mathrm{C}$ (decomp.) (from aqueous ethanol) $\left[\right.$ lit., ${ }^{41}$ m.p. $170^{\circ} \mathrm{C}$ (decomp.)], $[\alpha]_{\mathrm{D}}{ }^{18}-31.0^{\circ}$ (c 1.65 in $\mathrm{Me}_{2} \mathrm{NCHO}$) ; $\lambda_{\max .}(\mathrm{EtOH}) 260 \mathrm{~nm}(\varepsilon 10000)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added $] 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $2.30\left(1 \mathrm{H}\right.$, ddd, $J_{1^{\prime} \cdot 2^{\prime}} 7.0 \mathrm{~Hz}, J_{2^{\prime}, 2^{\prime \prime}} 13.5 \mathrm{~Hz}$, and $J_{2^{\prime} \cdot 3^{\prime}} 4.5$ $\left.\mathrm{Hz}, \mathrm{H}-2^{\prime}\right), 2.72\left(1 \mathrm{H}\right.$, ddd, $J_{1^{\prime} .2^{\prime \prime}} 7.0 \mathrm{~Hz}$ and $J_{2^{\prime \prime} .3^{\prime}} c a .1 \mathrm{~Hz}$, $\left.\mathrm{H}-2^{\prime \prime}\right), 3.8-4.1\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}\right), 4.1-4.3\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right.$ and $\left.5^{\prime \prime}\right), 4.3-4.5\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 6.15\left(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-\mathrm{l}^{\prime}\right)$, and 7.87 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$) (Found: C, 43.95; H, 5.15; N, 21.1. $\mathrm{C}_{12} \mathrm{H}_{15}{ }^{-}$ $\mathrm{N}_{5} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C, $44.05 ; \mathrm{H}, 5.25 ; \mathrm{N}, 21.2 \%$).
$\mathrm{N}^{4}, 3^{\prime}, 5^{\prime}$-Triacetyl- 2^{\prime}-deoxycytidine (19).-To a solution of 2^{\prime}-deoxycytidine (3 g) in anhydrous pyridine (30 ml) was added acetic anhydride (10 ml) with ice cooling; the resulting mixture was set aside overnight at room temperature and was then treated with methanol with ice cooling and evaporated to dryness. The residue was chromatographed to give syrupy (19) ($4.0 \mathrm{~g}, 86 \%$ yield); this was confirmed as pure enough in terms of t.l.c. [$R_{F} 0.46$ chloroform-methanol (9: $1, \mathrm{v} / \mathrm{v})]$ for subsequent use.

Compound (19) had $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added $]$ $2.06(6 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.27(3 \mathrm{H}, \mathrm{s}, \mathrm{NAc}), 2.6-3.0(2 \mathrm{H}, \mathrm{m}$, $J_{1^{\prime}, 2^{\prime}} 6.0 \mathrm{~Hz}$ and $J_{1^{\prime} .2^{\prime \prime}}^{\prime} 8.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ and $\left.\mathrm{H}-2^{\prime \prime}\right), 4.2-4.4$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}, 5^{\prime}$, and $5^{\prime \prime}$), $5.1-5.3\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 6.20(1 \mathrm{H}$, dd, $\mathrm{H}-\mathrm{l}^{\prime}$), $7.50\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 8 \mathrm{~Hz}, \mathrm{H}-5\right)$, and $8.03(1 \mathrm{H}, \mathrm{d}$, H-6)

Partial Deacetylation of (19).-A solution of (19) (1.29 g, 3.6 mmol) in pyridine (50 ml) was treated with (1) (0.4 ml , 8 mmol) at room temperature for 1 day, and the resulting mixture was worked up as described above to give $3^{\prime}, 5^{\prime}$ -di- O-acetyl- 2^{\prime}-deoxycytidine ($290 \mathrm{mg}, 25 \%$ yield), 3^{\prime} - O -acetyl- 2^{\prime}-deoxycytidine (19a) ($130 \mathrm{mg}, 13 \%$ yield), and $5^{\prime}-O-$ acetyl-2'-deoxycytidine (19b) ($380 \mathrm{mg}, 38 \%$ yield).
$3^{\prime}, 5^{\prime}$-Di-O-acetyl-2'-deoxycytidine (syrup) had $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2}{ }_{2}{ }^{-}\right.$ $\mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}$ was added $] 2.06(6 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.6-3.0$ $\left(2 \mathrm{H}, \mathrm{m}, J_{1^{\prime} \cdot 2^{\prime}} 6.0 \mathrm{~Hz}\right.$ and $J_{1^{\prime} .2^{\prime \prime}}, 6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ and $\left.2^{\prime \prime}\right)$, 4.15-4.45 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}, 5^{\prime}$, and $5^{\prime \prime}$), $5.10-5.35(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}-3^{\prime}\right), 5.80\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 7.0 \mathrm{~Hz}, \mathrm{H}-5\right), 6.20\left(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-\mathrm{l}^{\prime}\right)$, and 7.60 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-6$).

Compound (19a) (syrup) had $\lambda_{\text {max. }}$ (EtOH) 273 nm (ε $8400)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} ; \mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added $] 2.05(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OAc}), 2.00-2.3\left(2 \mathrm{H}, \mathrm{m}, J_{1^{\prime} .2^{\prime}} 6.0 \mathrm{~Hz}\right.$ and $J_{1^{\prime} .2^{\prime \prime}} 6.0 \mathrm{~Hz}$, $\mathrm{H}-2^{\prime}$ and $2^{\prime \prime}$), $3.95-4.3\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}, 5^{\prime}\right.$, and $\left.5^{\prime \prime}\right), 5.1-5.3$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 5.80\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 7.0 \mathrm{~Hz}, \mathrm{H}-5\right), 6.16(1 \mathrm{H}, \mathrm{t}$, $\mathrm{H}-1^{\prime}$), and 7.85 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-6$); picrate had m.p. $174.0-$ $175.0^{\circ} \mathrm{C}$ (decomp.) (from water) [lit., ${ }^{42} \mathrm{~m} . \mathrm{p} .173{ }^{\circ} \mathrm{C}$ (decomp.) $]$, $[\alpha]_{\mathrm{o}}{ }^{18}+35.2^{\circ}$ (c 1.0 in $\mathrm{Me}_{2} \mathrm{NCHO}$) (Found: C , 41.1; $\mathrm{H}, 3.65 ; \mathrm{N}, 17.4 . \quad \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires C, 41.0; H, 3.65; N, 16.9%).

Compound (19b) had m.p. $185.0-186.0^{\circ} \mathrm{C}$ (from ethanol), $[\alpha]_{\mathrm{D}}{ }^{18}+43.1^{\circ}$ (c 1.0 in $\mathrm{Me}_{2} \mathrm{NCHO}$); $\lambda_{\text {max. }}(\mathrm{EtOH}) 273$ $\mathrm{nm}(\varepsilon 7900) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added $] 2.03$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.0-2.3\left(2 \mathrm{H}, \mathrm{m}, J_{1^{\prime} .2^{\prime}} 6.5 \mathrm{~Hz}\right.$ and $J_{1^{\prime} .2^{\prime \prime}} 6.5$ $\mathrm{Hz}, \mathrm{H}-2^{\prime}$ and $2^{\prime \prime}$), $3.8-4.1$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}$), $4.1-4.4$ (3 H , $\mathrm{m}, \mathrm{H}-3^{\prime}, 5^{\prime}$, and $5^{\prime \prime}$), 5.80 ($1 \mathrm{H}, \mathrm{d}, J_{5.6} 7.0 \mathrm{~Hz}, \mathrm{H}-5$), 6.20 (1 H , $\mathrm{t}, \mathrm{H}-\mathrm{l}^{\prime}$), and 7.58 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-6$) (Found: C, 48.9; H, 5.65 ; $\mathrm{N}, 15.7$. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $\left.\mathrm{C}, 49.05 ; \mathrm{H}, 5.6 ; \mathrm{N}, 15.6 \%\right)$.

Partial O-Deacetylation of (20).—A solution of (20) ${ }^{43}$ $(1.9 \mathrm{~g}, 6 \mathrm{mmol})$ in pyridine $(50 \mathrm{ml})$ was treated with (1) ($0.6 \mathrm{ml}, 12 \mathrm{mmol}$) at room temperature for 1 day, and the resulting solution was worked up as described above to give 3'-O-acetylthymidine (20a) ($\mathbf{3 6 5} \mathrm{mg}, \mathbf{2 1} \%$ yield), $5^{\prime}-O-$ acetylthymidine (20b) ($920 \mathrm{mg}, 56 \%$ yield); (20) (190 mg , 10% yield) was recovered unchanged.

Compound (20b) had m.p. 151.5-152 (from acetonecyclohexane) (lit.,43 m.p. $146{ }^{\circ} \mathrm{C}$), $[\alpha]_{\mathrm{D}}{ }^{18}-7.1^{\circ}(c) 1.05$ in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right)$; $\lambda_{\text {max. }}(\mathrm{EtOH}) 266 \mathrm{~nm}(\varepsilon 10500) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\right.$ $\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}$ was added] $1.80(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-5), 2.03(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OAc}), 2.0-2.3\left(2 \mathrm{H}, \mathrm{m}, J_{1^{\prime} .2^{\prime}} 7.5 \mathrm{~Hz}\right.$ and $J_{1^{\prime} .2^{\prime \prime}} 7.5 \mathrm{~Hz}$, $\mathrm{H}-2^{\prime}$ and $2^{\prime \prime}$), $3.8-4.0\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right)$, $4.1-4.3$ ($3 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-4^{\prime}, 5^{\prime}$, and $5^{\prime \prime}$), $6.16\left(1 \mathrm{H}, \mathrm{t}, \mathrm{H}-\mathrm{l}^{\prime}\right)$, and $7.43(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6)$ (Found: C, 50.8; H, 5.60; N, 10.05. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires C, 50.7 ; H, 5.65 ; N, 9.85%).

Compound (20a) had m.p. 174.5-176.0 ${ }^{\circ}$ (from acetonecyclohexane) (lit. ${ }^{43}$ m.p. 176°) $[\alpha]_{548^{18}}+2.0^{\circ}$ and $[\alpha]_{\mathrm{D}}{ }^{18} 0^{\circ}$ (c 1.5 in $\mathrm{Me}_{2} \mathrm{NCHO}$); $\lambda_{\text {max. }}(\mathrm{EtOH}) 265 \mathrm{~nm}(\varepsilon 9500)$; $\delta_{\mathrm{H}^{-}}$ $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added] $1.80(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-5)$, $2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.2-2.4\left(2 \mathrm{H}, \mathrm{m}, J_{1^{\prime} \cdot 2^{\prime}} 7.5 \mathrm{~Hz}\right.$ and $J_{1^{\prime}, 2^{\prime \prime}}$ $7.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ and $2^{\prime \prime}$), $3.55-3.7$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}$ and $5^{\prime \prime}$), 3.9 $4.1\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}\right), 5.1-5.3$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$), $6.20(1 \mathrm{H}, \mathrm{t}$, $\mathrm{H}-\mathrm{l}^{\prime}$), and 7.75 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6$) (Found: C, 50.65 ; H, 5.65 ; $\mathrm{N}, 10.15 . \quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $\mathrm{C}, 50.7 ; \mathrm{H}, 5.65 ; \mathrm{N}, 9.85 \%$).

Acetylation of 3^{\prime}-O-Methyladenosine.- 3^{\prime}-O-Methyladenosine ${ }^{44}$ ($7.5 \mathrm{~g}, 26.7 \mathrm{mmol}$) was treated in acetic anhydride (100 ml) in the presence of anhydrous sodium acetate (1.0 g) at 80° for 5 h , and the resulting mixture was then evaporated to dryness. The residue was chromatographed on a column of silica gel with ethanol-chloroform as eluant to give (21) (8.29 g, 85\% yield); which was chromatographically confirmed to be pure enough for subsequent use [$R_{\mathrm{F}} 0.24$ benzene-methanol) ($9: 1, \mathrm{v} / \mathrm{v}$)].

Compound (21) had $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\mathrm{SiMe}_{4}\right) 2.06$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), $2.16(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.62(3 \mathrm{H}, \mathrm{s}, \mathrm{NAc}), 3.42(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, ca. $4.5\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}, 4^{\prime}, 5^{\prime}\right.$, and $\left.5^{\prime \prime}\right), 5.95\left(1 \mathrm{H}, \mathrm{m}, J_{1^{\prime} .2^{\prime}} 3.0\right.$ $\left.\mathrm{Hz}, \mathrm{H}-2^{\prime}\right), 6.25\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-\mathrm{l}^{\prime}\right), 8.39(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8), 8.69(1 \mathrm{H}$, s, H-2), and 9.95br ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$).

Acetylation of $\mathbf{2}^{\prime}$-O-Methyladenosine.-In a similar way to the above acetylation, 2'-O-methyladenosine ${ }^{44}$ ($7.5 \mathrm{~g}, 26.7$ mmol) was worked up with acetic anhydride in the presence of anhydrous sodium acetate to give (22) (8.5 g, 87\% yield; syrup); which was also confirmed chromatographically to be pure enough for subsequent use [$R_{\mathrm{F}} 0.24$ benzene-methanol) (9: $1, \mathrm{v} / \mathrm{v})$].

Compound (22) had $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\mathrm{SiMe}_{4}\right) 2.13(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$,
$2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.59(3 \mathrm{H}, \mathrm{s}, \mathrm{NAc}), 3.54(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 4.4-4.6 (3 H, m, H-4', 5^{\prime}, and $5^{\prime \prime}$), $5.4-5.6\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right)$, $4.79\left(1 \mathrm{H}, \mathrm{t}, J_{1^{\prime} \cdot 2^{\prime}} 5.0 \mathrm{~Hz}\right.$ and $\left.J_{2^{\prime} \cdot 3^{\prime}} 5.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.19(1 \mathrm{H}$, d, H-1'), 8.40 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$), and 8.70 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$).

Partial O-Deacetylation of (21).-A solution of (21) (5 g, $12.3 \mathrm{mmol})$ in glacial acetic acid-pyridine ($1: 4, \mathrm{v} / \mathrm{v}$) (150 $\mathrm{ml})$ was treated with (1) ($1.32 \mathrm{ml}, 27.1 \mathrm{mmol}$) at room temperature for 2 days, and the resulting mixture was worked up as described in the partial O-debenzoylation of (3), to give $2^{\prime}, 5^{\prime}$-di- O-acetyl- $3^{\prime}-O$-methyladenosine (21b) ($0.63 \mathrm{~g}, 14 \%$ yield) and $5^{\prime}-O$-acetyl- $3^{\prime}-O$-methyladenosine (21a) ($2.83 \mathrm{~g}, 74 \%$ yield).

Compound (21b) had m.p. $198-200{ }^{\circ} \mathrm{C}$ (from methanol), $[\alpha]_{\mathrm{D}}{ }^{18}-27^{\circ}\left(c 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \lambda_{\text {max. }}(\mathrm{EtOH}) 260 \mathrm{~nm}(\varepsilon 14300)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\mathrm{SiMe}_{4}\right) 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.13(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, 3.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.3-4.6$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}, 4^{\prime}, 5^{\prime}$, and $5^{\prime \prime}$), $c a .6 .0\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{NH}_{2}\right), 6.13\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 4.5 \mathrm{~Hz}\right.$, $\mathrm{H}-\mathrm{l}^{\prime}$), 7.94 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$), and 8.35 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$) (Found: $\mathrm{C}, 49.5 ; \mathrm{H}, 5.25 ; \mathrm{N}, 19.35 . \quad \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{6}$ requires $\mathrm{C}, 49.3$; H, 5.25 ; N, 19.15%).

Compound (21a) had m.p. $198.5{ }^{\circ} \mathrm{C}$ (from methanol), $[\alpha]_{\mathrm{D}}{ }^{18}-42.4^{\circ}\left({ }^{c} 1.5\right.$ in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right) ; \lambda_{\text {max. }}$ (EtOH) 259 nm ($\varepsilon 13400), \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4}\right] 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.43(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 4.00\left(1 \mathrm{H}, \mathrm{t}, J_{3^{\prime} \cdot 4^{\prime}} 5.3 \mathrm{~Hz}\right.$ and $\left.J_{2^{\prime} \cdot 3^{\prime}} 5.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$, $4.1-4.5\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}, 5^{\prime}\right.$, and $\left.5^{\prime \prime}\right), 4.88\left(1 \mathrm{H}, \mathrm{m}, J_{1^{\prime} .2^{\prime}}\right.$ 5.3 Hz and $\left.J_{2^{\prime} .2^{\prime}-\mathrm{OH}} 6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.94\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1^{\prime}\right)$, $7.3 \mathrm{br}\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 8.00(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$, and $8.33(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-2$) (Found: $\mathrm{C}, 47.8 ; \mathrm{H}, 5.3 ; \mathrm{N}, 21.55 . \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires $\mathrm{C}, 48.3 ; \mathrm{H}, 5.2 ; \mathrm{N}, 21.65 \%$).

Partial O-Deacetylation of (22).—A solution of (22) (0.92 $\mathrm{g}, 2.3 \mathrm{mmol}$) in solvent (30 ml) was treated with (1) (0.36 $\mathrm{ml}, 7.6 \mathrm{mmol}$) at room temperature for 8 days, and the resulting mixture was worked up as described above to give $3^{\prime}, 5^{\prime}$-di- O-acetyl- $2^{\prime}-O$-methyladenosine (22b) (0.45 g , 54% yield) and $5^{\prime}-O$-acetyl-2'-O-methyladenosine (22a) ($0.33 \mathrm{~g}, 44 \%$ yield).

Compound (22b) had m.p. $133-134{ }^{\circ} \mathrm{C}$ (from methanol); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added $] 2.09(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $2.19(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.30(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.3-4.5(3 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-4^{\prime}, 5^{\prime}$, and $\left.5^{\prime \prime}\right)$, $5.5-5.7\left(1 \mathrm{H}, \mathrm{m}, J_{2^{\prime} \cdot 3^{\prime}} 6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$, $4.93\left(1 \mathrm{H}, \mathrm{t}, J_{1^{\prime} \cdot 2^{\prime}} 6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.09\left(\mathrm{l}^{\prime} \mathrm{H}, \mathrm{d}, \mathrm{H}-1^{\prime}\right), 8.20$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$), and $8.40(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$) (Found: C, 49.2 ; H, $5.2 ; \mathrm{N}, 18.85 . \quad \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{6}$ requires $\mathrm{C}, 49.3 ; \mathrm{H}, 5.25 ; \mathrm{N}$, $19.15 \%)$.

Compound (22a) had m.p. $138.5-139.5{ }^{\circ} \mathrm{C}$ (from methanol); $[\alpha]_{\mathrm{D}}{ }^{18}-25.8^{\circ}$ (c $\mathbf{1 . 5}$ in $\left.\mathrm{Me}_{2} \mathrm{NCHO}\right)$; $\lambda_{\max .}$ (EtOH) $260 \mathrm{~nm}(\varepsilon 14100) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{SiMe}_{4} ; \mathrm{D}_{2} \mathrm{O}\right.$ was added] $2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.45(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.0-4.2(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}-3^{\prime}\right), c a .4 .3\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}, 5^{\prime}\right.$, and $\left.5^{\prime \prime}\right), c a .4 .5(1 \mathrm{H}, \mathrm{m}$, $\left.J_{1^{\prime}, 2^{\prime}} 4.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.10\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1^{\prime}\right), 8.23(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$, and $839(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$ (Found: C, $48.15 ; \mathrm{H}, 5.25$; N, 21.6. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires $\mathrm{C}, 48.3 ; \mathrm{H}, 5.3 ; \mathrm{N}, 21.65 \%$).

We thank the Japanese Ministry of Education for a Scientific Research Grant-in-aid.
[8/1367 Received, 21st July, 1978]

REFERENCES

${ }^{1}$ Y. Araki, Y. Hijioka, and Y. Ishido, Carbohydrate Res., 1978, 64, 309.
${ }^{2}$ B. Ramamoothy, R. G. Lees, D. G. Kleid, and H. G. Khorana, J. Biol. Chem., 1976, 215, 676.
${ }^{3}$ D. M. Brown, G. D. Fasman, D. I. Magrath, and A. R. Todd, J. Chem. Soc., 1954, 1448; D. M. Brown, A. R. Todd, and S. Varadarajan, ibid., 1956, 2388.
${ }^{4}$ M. Ikehara, and S. Uesugi, Tetrahedron, 1972, 28, 3687.

5 N. Imura, T. Tsuruo, and T. Ukita, Chem. Pharm. Bull. (Tokyo), 1968, 16, 1105.

- K. K. Ogilvie, Canad. J. Chem., 1973, 51, 3799; K. K. Ogilvie, K. L. Sadana, E. A. Thompson, M. A. Quilliam, and J. B. Westmore, Tetrahedron Letters, 1947, 2861.
${ }^{7}$ A. F. Cook and J. G. Moffatt, J. Amer. Chem. Soc., 1967, 89, 2697.
${ }^{8}$ R. L. Letsinger and P. S. Miller, J. Amer. Chem. Soc., 1969, 91, 3356.
${ }^{\circ}$ H. P. M. Fromageot, B. E. Griffin, C. B. Reese, and J. E. Sulston, Tetrahedron, 1967, 23, 2315.
${ }^{10}$ D. H. Rammler and H. G. Khorana, J. Amer. Chem. Soc., 1962, 84, 3112.
${ }^{11}$ Y. Ishido, N. Nakazaki, and N. Sakairi, J.C.S. Perkin I, 1977, 657.
${ }^{12}$ 'Y. Ishido, N. Nakazaki, and N. Sakairi, J.C.S. Chem. Comm., 1976, 832.
${ }^{13}$ A. D. Brown and R. K. Robins, J. Amer. Chem. Soc., 1965, 87, 1145.

14 J. B. Gin and C. A. Dekker, Biochem., 1968, 7, 1413.
${ }^{15}$ T. Takeda, Y. Ohashi, and Y. Sasada, Acta Cryst., 1974, 30, 825 ; ibid., 1975, 31, 1202; ibid., 1976, 32, 614.
${ }^{16}$ P. A. S. Smith, ' Organic Reactions,' Wiley, New York, 1956, vol, 3, p. 366.
${ }_{17}$ R. L. Letsinger, P. S. Miller, and D. M. Grams, Tetrahedron Letters, 1968, 2621.
${ }^{18}$ C. B. Reese and D. R. Trentham, Tetrahedron Letters, 1965, 2467.

19 D. H. Hayes and F. Hayes-Baron, J. Chem. Soc. (C), 1967, 1528.
${ }^{20}$ H. P. M. Fromagoet, B. E. Griffin, C. B. Reese, J. E. Sulston, and D. R. Trentham, Tetrahedron, 1966, 22, 705.
${ }_{21}$ T. Hata, I. Nakagawa, M. Sekine, K. Yamaguchi, Y. Ishido, N. Nakazaki, K. Shimotohno, and K. Miura, unpublished results, presented at 3rd Symposium on Synthesis of Compounds with Potential Biological Activity, June 21-22, 1977, Tokyo; Abstract, pp. 89-92.
${ }_{22}$ T. Neilson, E. V. Wastrodowski, and E. S. Werstiuk, Canad. J. Chem., 1973, 51, 1068.
${ }^{23}$ R. J. Gregoire and T. Neilson, Canad. J. Chem., 1978, 56,
${ }^{24}$ Y. Mizuno, T. Endo, and K. Ikeda, J. Org. Chem., 1975, 40, 1385.
${ }_{25}$ A. M. Michelson, L. Szabo, and A. R. Todd, J. Chem. Soc., 1956, 1546.
${ }^{25}$ B. E. Griffin and C. B. Reese, Proc. Nat. Acad. Sci., U.S.A., 1964, 51, 440.
${ }_{27}$ W. Andersen, D. H. Hayes, A. M. Michelson, and A. R. Todd, J. Chem. Soc., 1954, 1882.
${ }^{28}$ H. G. Zachau and W. Karau, Chem. Ber., 1960, 98, 1830.
${ }^{29}$ H. R. Bentley, K. G. Cunningham, and F. S. Spring, J. Chem. Soc., 1951, 2301
${ }^{30}$ L. Horn and H. Fernekiss, Chem. Ber., 1961, 94, 712
${ }_{31}$ I. I. Kolodkina, A. S. Guseva, E. A. Ivanova, L. S. Vafshchavska, and A. N. Iurkevich, Zhur. obshchei Khim., 1970, 40, 2498.
${ }_{32}$ C. B. Reese and R. Saffhill, J.C.S. Perkin I, 1972, 2937.
${ }^{33}$ H. P. M. Fromageot, C. B. Reese, and J. E. Sulston, Tetrahedron, 1968, 24, 3533.

34 J. J. Fox, I. Wempen, A. Hampton, and I. L. Doerr, J. Amer. Chem. Soc., 1958, 80, 1669; M. Prystas and F. Sorm, Coll. Czech. Chem. Comm., 1966, 31, 1028.

35 H. Bredereck, Chem. Ber., 1947, 80, 401.
${ }^{36}$ J. J. Fox, S. V. Praag, I. Wempen, I. L. Doerr, L. Cheving, J. E. Knoll, M. L. Didinoff, and A. Bendich, J. Amer. Chem. Soc., 1959, 81, 178.
${ }^{37}$ D. M. Brown, A. R. Todd, and S. Varadarajan, J. Chem. Soc., 1956, 2388.
${ }^{38}$ D. M. Brown, A. R. Todd, and S. Varadarajan, J. Chem. Soc., 1956, 2384.
${ }^{39}$ T. L. V. Ulbricht and G. T. Rogers, J. Chem. Soc., 1965, 6130.

40 T. Sasaki and Y. Mizuno, Chem. and Pharm. Bull. (Japan), 1967, 15, 894.
${ }^{41}$ D. H. Hayes, A. M. Michelson, and A. R. Todd, J. Chem. Soc., 1955, 808.
${ }^{42}$ A. M. Michelson and A. R. Todd, J. Chem. Soc., 1954, 34.
43 A. M. Michelson and A. R. Todd, J. Chem. Soc., 1955, 2632.
${ }^{44}$ M. J. Robins, S. R. Naik. and A. S. K. Lee, J. Org. Chem., 1974, 39, 1891.

[^0]: \dagger The chromatographic separation involved in this procedure using the silica gel of Wakogel C-300 has recently been proved to be crucial to give such regioselectivity (Y. Ishido, N. Sakairi, and I. Hirao, 6th Symposium on Nucleic Acid Chemistry, Nagoya, Japan, October 25-26, 1978).

[^1]: * A similar investigation has been performed with respect to cyclopentanediol system by Bruice and Fife (T. C. Bruice and T. H. Fife, J. Amer. Chem. Soc., 1962, 84, 1973) in the light of those by Henbest and Lovell (H. B. Henbest and B. J. Lovell, J. Chem. Soc., 1957, 1965), on solvolysis of the 3-acetoxy-5-hydroxysystem involved in cholestane and coprostane derivatives, and by Kupchan et al. (S. M. Kupchan, W. S. Johnson, and S. Rajagopalam, Tetrahedron, 1959, 7, 47), on solvolysis of germine and cevine derivatives.

[^2]: * An investigation in connection with this problem is now in progress in terms of spectroscopic techniques.

[^3]: \dagger Y. Ishido, M. Sekiya, and N. Nakazaki, unpublished results; presented at 2nd Joint Meeting of Canad. Chem. Inst. and Amer. Chem. Soc., Montreal, May 29-June 2, 1977; Abstract, CARB 28; in addition to the electronic effect of the aglycone moiety, conformational factors are conceivable to be involved in affording the excellent regioselectivity, and are under investigation.

